Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14656, 2024 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918553

RESUMO

Humans and animals can learn new skills after practicing for a few hours, while current reinforcement learning algorithms require a large amount of data to achieve good performances. Recent model-based approaches show promising results by reducing the number of necessary interactions with the environment to learn a desirable policy. However, these methods require biological implausible ingredients, such as the detailed storage of older experiences, and long periods of offline learning. The optimal way to learn and exploit world-models is still an open question. Taking inspiration from biology, we suggest that dreaming might be an efficient expedient to use an inner model. We propose a two-module (agent and model) spiking neural network in which "dreaming" (living new experiences in a model-based simulated environment) significantly boosts learning. Importantly, our model does not require the detailed storage of experiences, and learns online the world-model and the policy. Moreover, we stress that our network is composed of spiking neurons, further increasing the biological plausibility and implementability in neuromorphic hardware.


Assuntos
Modelos Neurológicos , Redes Neurais de Computação , Reforço Psicológico , Humanos , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Algoritmos , Aprendizagem/fisiologia , Rede Nervosa/fisiologia , Animais , Simulação por Computador
2.
Cell Rep Methods ; 4(1): 100681, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38183979

RESUMO

Neuroscience is moving toward a more integrative discipline where understanding brain function requires consolidating the accumulated evidence seen across experiments, species, and measurement techniques. A remaining challenge on that path is integrating such heterogeneous data into analysis workflows such that consistent and comparable conclusions can be distilled as an experimental basis for models and theories. Here, we propose a solution in the context of slow-wave activity (<1 Hz), which occurs during unconscious brain states like sleep and general anesthesia and is observed across diverse experimental approaches. We address the issue of integrating and comparing heterogeneous data by conceptualizing a general pipeline design that is adaptable to a variety of inputs and applications. Furthermore, we present the Collaborative Brain Wave Analysis Pipeline (Cobrawap) as a concrete, reusable software implementation to perform broad, detailed, and rigorous comparisons of slow-wave characteristics across multiple, openly available electrocorticography (ECoG) and calcium imaging datasets.


Assuntos
Ondas Encefálicas , Software , Encéfalo , Sono , Mapeamento Encefálico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA