Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Enzyme Inhib Med Chem ; 37(1): 1426-1436, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35607924

RESUMO

In order to explain the negative slope of KappM/kappcat versus inhibitor concentration observed in the study of epigallocatechin gallate acting as an inhibitor of aldose reductase, a kinetic analysis was performed to rationalise the phenomenon. Classical and non-classical models of complete and incomplete enzyme inhibition were devised and analysed to obtain rate equations suitable for the interpretation of experimental data. The results obtained from the different approaches were discussed in terms of the meaning of the emerging kinetic constants. A decrease of KappM/kappcat versus the inhibitor concentration was revealed to be a valuable indication of the occurrence of an incomplete inhibition. This indication, which is univocal in the case of an uncompetitive inhibition, may be especially useful when the residual activity resulting from inhibition is rather low.


Assuntos
Aldeído Redutase , Inibidores Enzimáticos , Inibidores Enzimáticos/farmacologia , Cinética
2.
Molecules ; 26(2)2021 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-33435264

RESUMO

Diabetes mellitus (DM) is a complex disease which currently affects more than 460 million people and is one of the leading cause of death worldwide. Its development implies numerous metabolic dysfunctions and the onset of hyperglycaemia-induced chronic complications. Multiple ligands can be rationally designed for the treatment of multifactorial diseases, such as DM, with the precise aim of simultaneously controlling multiple pathogenic mechanisms related to the disease and providing a more effective and safer therapeutic treatment compared to combinations of selective drugs. Starting from our previous findings that highlighted the possibility to target both aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two enzymes strictly implicated in the development of DM and its complications, we synthesised 3-(5-arylidene-4-oxothiazolidin-3-yl)propanoic acids and analogous 2-butenoic acid derivatives, with the aim of balancing the effectiveness of dual AR/PTP1B inhibitors which we had identified as designed multiple ligands (DMLs). Out of the tested compounds, 4f exhibited well-balanced AR/PTP1B inhibitory effects at low micromolar concentrations, along with interesting insulin-sensitizing activity in murine C2C12 cell cultures. The SARs here highlighted along with their rationalization by in silico docking experiments into both target enzymes provide further insights into this class of inhibitors for their development as potential DML antidiabetic candidates.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus/tratamento farmacológico , Inibidores Enzimáticos , Hipoglicemiantes , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Aldeído Redutase/metabolismo , Animais , Diabetes Mellitus/enzimologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Células Hep G2 , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Camundongos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
3.
Biochem Biophys Res Commun ; 522(1): 259-263, 2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31759632

RESUMO

Carbonyl reductase 1 (CBR1) is an NADP-dependent enzyme that exerts a detoxifying role, which catalyses the transformation of carbonyl-containing compounds. The ability of CBR1 to act on adducts between glutathione and lipid peroxidation derived aldehydes has recently been reported. In the present study, exploiting mass spectrometry and fluorescence spectroscopy, evidence is shown that CBR1 is able to retain NADP(H) at the active site even after extensive dialysis, and that this retention may also occur when the enzyme is performing catalysis. This property, together with the multi-substrate specificity of CBR1 in both directions of red/ox reactions, generates inter-conversion red/ox cycles. This particular feature of CBR1, in the case of the transformation of 3-glutathionyl, 4-hydroxynonanal (GSHNE), which is a key substrate of the enzyme in detoxification, supports the disproportionation reaction of GSHNE without any apparent exchange of the cofactor with the solution. The importance of the cofactor as a prosthetic group for other dehydrogenases exerting a detoxification role is discussed.


Assuntos
Oxirredutases do Álcool/metabolismo , NADP/metabolismo , Oxirredutases do Álcool/química , Domínio Catalítico , Glutationa/análogos & derivados , Glutationa/metabolismo , Humanos , Especificidade por Substrato
4.
J Enzyme Inhib Med Chem ; 35(1): 840-846, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32208768

RESUMO

The ability to catalyse a reaction acting on different substrates, known as "broad-specificity" or "multi-specificity", and to catalyse different reactions at the same active site ("promiscuity") are common features among the enzymes. These properties appear to go against the concept of extreme specificity of the catalytic action of enzymes and have been re-evaluated in terms of evolution and metabolic adaptation. This paper examines the potential usefulness of a differential inhibitory action in the study of the susceptibility to inhibition of multi-specific or promiscuous enzymes acting on different substrates. Aldose reductase is a multi-specific enzyme that catalyses the reduction of both aldoses and hydrophobic cytotoxic aldehydes and is used here as a concrete case to deal with the differential inhibition approach.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Aldeídos/farmacologia , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/metabolismo , Aldeídos/química , Biocatálise , Inibidores Enzimáticos/química , Humanos
5.
Biochem Soc Trans ; 47(6): 1931-1940, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31697320

RESUMO

The recruitment of the furanosidic scaffold of ribose as the crucial step for nucleotides and then for nucleic acids synthesis is presented. Based on the view that the selection of molecules to be used for relevant metabolic purposes must favor structurally well-defined molecules, the inadequacy of ribose as a preferential precursor for nucleotides synthesis is discussed. The low reliability of ribose in its furanosidic hemiacetal form must have played ab initio against the choice of d-ribose for the generation of d-ribose-5-phosphate, the fundamental precursor of the ribose moiety of nucleotides. The latter, which is instead generated through the 'pentose phosphate pathway' is strictly linked to the affordable and reliable pyranosidic structure of d-glucose.


Assuntos
Furanos/metabolismo , Ribose/metabolismo , Fenômenos Bioquímicos , Via de Pentose Fosfato , Reprodutibilidade dos Testes
6.
J Enzyme Inhib Med Chem ; 34(1): 350-360, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30734590

RESUMO

Seven triterpenoid saponins were identified in methanolic extracts of seeds of the Zolfino bean landrace (Phaseolus vulgaris L.) by HPLC fractionation, revealing their ability to inhibit highly purified human recombinant aldose reductase (hAKR1B1). Six of these compounds were associated by MS analysis with the following saponins already reported in different Phaseolus vulgaris varieties: soyasaponin Ba (V), soyasaponin Bb, soyasaponin Bd (sandosaponin A), soyasaponin αg, 3-O-[R-l-rhamnopyranosyl(1 → 2)-α-d-glucopyranosyl(1 → 2)-α-d-glucuronopyranosyl]olean-12-en-22-oxo-3α,-24-diol, and soyasaponin ßg. The inhibitory activity of the collected fractions containing the above compounds was tested for hAKR1B1-dependent reduction of both l-idose and 4-hydroxynonenal, revealing that some are able to differentially inhibit the enzyme. The present work also highlights the difficulties in the search for aldose reductase differential inhibitors (ARDIs) in mixtures due to the masking effect on ARDIs exerted by the presence of conventional aldose reductase inhibitors. The possibility of differential inhibition generated by a different inhibitory model of action of molecules on different substrates undergoing transformation is also discussed.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Phaseolus/química , Saponinas/farmacologia , Sementes/química , Triterpenos/farmacologia , Aldeído Redutase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Humanos , Conformação Molecular , Saponinas/química , Saponinas/isolamento & purificação , Relação Estrutura-Atividade , Triterpenos/química , Triterpenos/isolamento & purificação
7.
Bioorg Med Chem Lett ; 28(23-24): 3712-3720, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30342956

RESUMO

Designed multiple ligands (DMLs), developed to modulate simultaneously a number of selected targets involved in etiopathogenetic mechanisms of a multifactorial disease, such as diabetes mellitus (DM), are considered a promising alternative to combinations of drugs, when monotherapy results to be unsatisfactory. In this work, compounds 1-17 were synthesized and in vitro evaluated as DMLs directed to aldose reductase (AR) and protein tyrosine phosphatase 1B (PTP1B), two key enzymes involved in different events which are critical for the onset and progression of type 2 DM and related pathologies. Out of the tested 4-thiazolidinone derivatives, compounds 12 and 16, which exhibited potent AR inhibitory effects along with interesting inhibition of PTP1B, can be assumed as lead compounds to further optimize and balance the dual inhibitory profile. Moreover, several structural portions were identified as features that could be useful to achieve simultaneous inhibition of both human AR and PTP1B through binding to non-catalytic regions of both target enzymes.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Tiazolidinas/química , Tiazolidinas/farmacologia , Aldeído Redutase/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Relação Estrutura-Atividade
8.
Molecules ; 23(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415496

RESUMO

We have synthesized a small series of five 3-[4-arylmethoxy)phenyl]propanoic acids employing an easy and short synthetic pathway. The compounds were tested in vitro against a set of four protein targets identified as key elements in diabetes: G protein-coupled receptor 40 (GPR40), aldose reductase (AKR1B1), peroxisome proliferator-activated receptor gama (PPARγ) and solute carrier family 2 (facilitated glucose transporter), member 4 (GLUT-4). Compound 1 displayed an EC50 value of 0.075 µM against GPR40 and was an AKR1B1 inhibitor, showing IC50 = 7.4 µM. Compounds 2 and 3 act as slightly AKR1B1 inhibitors, potent GPR40 agonists and showed an increase of 2 to 4-times in the mRNA expression of PPARγ, as well as the GLUT-4 levels. Docking studies were conducted in order to explain the polypharmacological mode of action and the interaction binding mode of the most active molecules on these targets, showing several coincidences with co-crystal ligands. Compounds 1-3 were tested in vivo at an explorative 100 mg/kg dose, being 2 and 3 orally actives, reducing glucose levels in a non-insulin-dependent diabetes mice model. Compounds 2 and 3 displayed robust in vitro potency and in vivo efficacy, and could be considered as promising multitarget antidiabetic candidates. This is the first report of a single molecule with these four polypharmacological target action.


Assuntos
Desenho de Fármacos , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Fenilpropionatos/química , Fenilpropionatos/farmacologia , Aldeído Redutase/antagonistas & inibidores , Animais , Sítios de Ligação , Linhagem Celular , Células Cultivadas , Técnicas de Química Sintética , Transportador de Glucose Tipo 4/agonistas , Transportador de Glucose Tipo 4/química , Transportador de Glucose Tipo 4/metabolismo , Humanos , Hipoglicemiantes/síntese química , Ligantes , Camundongos , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Terapia de Alvo Molecular , PPAR gama/antagonistas & inibidores , PPAR gama/química , Fenilpropionatos/síntese química , Ligação Proteica , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química
9.
Metabolomics ; 14(1): 2, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30830345

RESUMO

INTRODUCTION: While the evolutionary adaptation of enzymes to their own substrates is a well assessed and rationalized field, how molecules have been originally selected in order to initiate and assemble convenient metabolic pathways is a fascinating, but still debated argument. OBJECTIVES: Aim of the present study is to give a rationale for the preferential selection of specific molecules to generate metabolic pathways. METHODS: The comparison of structural features of molecules, through an inductive methodological approach, offer a reading key to cautiously propose a determining factor for their metabolic recruitment. RESULTS: Starting with some commonplaces occurring in the structural representation of relevant carbohydrates, such as glucose, fructose and ribose, arguments are presented in associating stable structural determinants of these molecules and their peculiar occurrence in metabolic pathways. CONCLUSIONS: Among other possible factors, the reliability of the structural asset of a molecule may be relevant or its selection among structurally and, a priori, functionally similar molecules.


Assuntos
Carboidratos/química , Redes e Vias Metabólicas/efeitos dos fármacos , Fenômenos Bioquímicos , Evolução Biológica , Enzimas/metabolismo , Metaboloma/efeitos dos fármacos , Modelos Biológicos , Estrutura Molecular , Relação Estrutura-Atividade
10.
J Biol Inorg Chem ; 22(4): 559-565, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28224255

RESUMO

Bovine lens aldose reductase is susceptible to a copper-mediated oxidation, leading to the generation of a disulfide bridge with the concomitant incorporation of two equivalents of the metal and inactivation of the enzyme. The metal complexed by the protein remains redox active, being able to catalyse the oxidation of different physiological thiol compounds. The thiol oxidase activity displayed by the enzymatic form carrying one equivalent of copper ion (Cu1-AR) has been characterized. The efficacy of Cu1-AR in catalysing thiol oxidation is essentially comparable to the free copper in terms of both thiol concentration and pH effect. On the contrary, the two catalysts are differently affected by temperature. The specificity of the AR-bound copper towards thiols is highlighted with Cu1-AR being completely ineffective in promoting the oxidation of both low-density lipoprotein and ascorbic acid.


Assuntos
Aldeído Redutase/metabolismo , Quelantes/metabolismo , Oxirredutases/metabolismo , Aldeído Redutase/química , Animais , Bovinos , Quelantes/química , Cobre/química , Íons/química , Íons/metabolismo , Oxirredutases/química
11.
J Enzyme Inhib Med Chem ; 32(1): 1152-1158, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856935

RESUMO

Aldose reductase (AR) is an enzyme devoted to cell detoxification and at the same time is strongly involved in the aetiology of secondary diabetic complications and the amplification of inflammatory phenomena. AR is subjected to intense inhibition studies and dimethyl sulfoxide (DMSO) is often present in the assay mixture to keep the inhibitors in solution. DMSO was revealed to act as a weak but well detectable AR differential inhibitor, acting as a competitive inhibitor of the L-idose reduction, as a mixed type of non-competitive inhibitor of HNE reduction and being inactive towards 3-glutathionyl-4-hydroxynonanal transformation. A kinetic model of DMSO action with respect to differently acting inhibitors was analysed. Three AR inhibitors, namely the flavonoids neohesperidin dihydrochalcone, rutin and phloretin, were used to evaluate the effects of DMSO on the inhibition studies on the reduction of L-idose and HNE.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Dimetil Sulfóxido/farmacologia , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/isolamento & purificação , Aldeído Redutase/metabolismo , Dimetil Sulfóxido/síntese química , Dimetil Sulfóxido/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solventes/síntese química , Solventes/química , Solventes/farmacologia , Relação Estrutura-Atividade
12.
Biochim Biophys Acta ; 1850(11): 2329-39, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26215787

RESUMO

BACKGROUND: Glucose is considered as one of the main sources of cell damage related to aldose reductase (AR) action in hyperglycemic conditions and a worldwide effort is posed in searching for specific inhibitors of the enzyme. This AR substrate has often been reported as generating non-hyperbolic kinetics, mimicking a negative cooperative behavior. This feature was explained by the simultaneous action of two enzyme forms acting on the same substrate. METHODS: The reduction of different aldoses and other classical AR substrates was studied using pure preparations of bovine lens and human recombinant AR. RESULTS: The apparent cooperative behavior of AR acting on glucose and other hexoses and pentoses, but not on tethroses, glyceraldehyde, 4-hydroxynonenal and 4-nitrobenzaldehyde, is generated by a partial nonclassical competitive inhibition exerted by the aldose hemiacetal on the reduction of the free aldehyde. A kinetic model is proposed and kinetic parameters are determined for the reduction of l-idose. CONCLUSIONS: Due to the unavoidable presence of the hemiacetal, glucose reduction by AR occurs under different conditions with respect to other relevant AR-substrates, such as alkanals and alkenals, coming from membrane lipid peroxidation. This may have implications in searching for AR inhibitors. The emerging kinetic parameters for the aldoses free aldehyde indicate the remarkable ability of the enzyme to interact and reduce highly hydrophilic and bulky substrates. GENERAL SIGNIFICANCE: The discovery of aldose reductase modulation by hemiacetals offers a new perspective in searching for aldose reductase inhibitors to be developed as drugs counteracting the onset of diabetic complications.


Assuntos
Acetais/farmacologia , Aldeído Redutase/metabolismo , Aldeído Redutase/antagonistas & inibidores , Hexoses/metabolismo , Humanos , Cinética
13.
J Enzyme Inhib Med Chem ; 31(6): 1556-9, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27072427

RESUMO

It is well known that a negative cooperative behavior displayed by a monomeric enzyme may be associated with the simultaneous presence of two enzymes acting on the same substrate. In this paper, emphasis is given to the effect exerted by a rapid equilibrium between the enzyme forms in leading to a hyperbolic behavior, thus masking the presence of multiple enzyme forms.


Assuntos
Enzimas/metabolismo , Cinética , Especificidade por Substrato
14.
J Enzyme Inhib Med Chem ; 31(6): 1560-5, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27541739

RESUMO

A magnesium-dependent cysteinyl-glycine hydrolyzing enzyme from the gastropod mollusk Patella caerulea was purified to electrophoretic homogeneity through a simple and rapid purification protocol. The molecular masses of the native protein and the subunit suggest that the enzyme has a homohexameric structure. Structural data in combination with kinetic parameters determined with Cys-Gly and compared with Leu-Gly as a substrate, indicate that the purified enzyme is a member of the peptidase family M17. The finding that an enzyme of the peptidase family M17 is responsible also in mollusks for the breakdown of Cys-Gly confirms the important role of this peptidase family in the glutathione metabolism.


Assuntos
Cisteína/química , Glicina/química , Hidrolases/metabolismo , Animais , Moluscos
15.
Biochem Biophys Res Commun ; 456(4): 891-5, 2015 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-25528584

RESUMO

Although glucose is one of the most important physio-pathological substrates of aldose reductase, it is not an easy molecule for in vitro investigation into the enzyme. In many cases alternative aldoses have been used for kinetic characterization and inhibition studies. However these molecules do not completely match the structural features of glucose, thus possibly leading to results that are not fully applicable to glucose. We show how aldose reductase is able to act efficiently on L-idose, the C-5 epimer of D-glucose. This is verified using both the bovine lens and the human recombinant enzymes. While the kcat values obtained are essentially identical to those measured for D-glucose, a significant decrease in KM was observed. This can be due to the significantly higher level of the free aldehyde form present in L-idose compared to D-glucose. We believe that L-idose is the best alternative to D-glucose in studies on aldose reductase.


Assuntos
Aldeído Redutase/metabolismo , Glucose/metabolismo , Hexoses/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Bovinos , Humanos , Imidazolidinas/farmacologia , Cinética , Oxirredução/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
16.
Biochem Biophys Res Commun ; 445(3): 556-60, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24530393

RESUMO

The possible preferential action exerted by an inhibitor on the transformation of one of two agonist substrates catalyzed by the same enzyme has recently been reported in studies on aldose reductase inhibition. This event was defined as "intra-site differential inhibition" and the molecules able to exert this action as "differential inhibitors". This work presents some basic kinetic models describing differential inhibition. Using a simple analytic approach, the results show that differential inhibition can occur through either competitive or mixed type inhibition in which the inhibitor prevalently targets the free enzyme. The results may help in selecting molecules whose differential inhibitory action could be advantageous in controlling the activity of enzymes acting on more than one substrate.


Assuntos
Aldeído Redutase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Aldeído Redutase/metabolismo , Humanos , Cinética , Modelos Biológicos , Especificidade por Substrato/efeitos dos fármacos
17.
Anal Bioanal Chem ; 405(5): 1779-85, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23203508

RESUMO

A simple and rapid colorimetric coupled enzymatic assay for the determination of glutathione is described. The proposed method is based on the specific reaction catalyzed by γ-glutamyltransferase, which transfers the γ-glutamyl moiety from glutahione to an acceptor, with the formation of the γ-glutamyl derivative of the acceptor and cysteinylglycine. The latter dipeptide is a substrate of leucyl aminopeptidase, which hydrolyzes cysteinylglycine to glycine and cysteine that can be easily measured spectrophotometrically. The proposed method was used to measure the content of glutathione in acid extracts of bovine lens, to follow the NADPH-dependent reduction of glutathione disulfide (GSSG) to reduced glutathione (GSH) catalyzed by the enzyme glutathione reductase and to determine the glutathione content in human astrocytoma ADF cells subjected to oxidative stress. The results obtained showed that the method can be suitably used for the determination of GSH and GSSG in different biological samples and to monitor tissue or cell redox status under different conditions. It is also applicable for following reactions involving GSH and/or GSSG.


Assuntos
Colorimetria/métodos , Ensaios Enzimáticos/métodos , Glutationa/análise , Cristalino/química , Animais , Astrocitoma/metabolismo , Bovinos , Linhagem Celular Tumoral , Colorimetria/economia , Ensaios Enzimáticos/economia , Glutationa/metabolismo , Humanos , Oxirredução , Estresse Oxidativo , Fatores de Tempo , gama-Glutamiltransferase/metabolismo
18.
J Environ Manage ; 117: 76-84, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23353880

RESUMO

The aim of this study was to define a new indicator for the quality of wastewaters that are released into the environment. A quality index is proposed for wastewater samples in terms of the inertness of wastewater samples toward enzyme activity. This involves taking advantage of the sensitivity of enzymes to pollutants that may be present in the waste samples. The effect of wastewater samples on the rate of a number of different enzyme-catalyzed reactions was measured, and the results for all the selected enzymes were analyzed in an integrated fashion (multi-enzymatic sensor). This approach enabled us to define an overall quality index, the "Impact on Enzyme Function" (IEF-index), which is composed of three indicators: i) the Synoptic parameter, related to the average effect of the waste sample on each component of the enzymatic sensor; ii) the Peak parameter, related to the maximum effect observed among all the effects exerted by the sample on the sensor components; and, iii) the Interference parameter, related to the number of sensor components that are affected less than a fixed threshold value. A number of water based samples including public potable tap water, fluids from urban sewage systems, wastewater disposal from leather, paper and dye industries were analyzed and the IEF-index was then determined. Although the IEF-index cannot discriminate between different types of wastewater samples, it could be a useful parameter in monitoring the improvement of the quality of a specific sample. However, by analyzing an adequate number of waste samples of the same type, even from different local contexts, the profile of the impact of each component of the multi-enzymatic sensor could be typical for specific types of waste. The IEF-index is proposed as a supplementary qualification score for wastewaters, in addition to the certification of the waste's conformity to legal requirements.


Assuntos
Enzimas/química , Águas Residuárias/química , Poluentes Químicos da Água/química , Qualidade da Água , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos
19.
Antioxidants (Basel) ; 12(4)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37107204

RESUMO

A common feature of different types of diabetes is the high blood glucose levels, which are known to induce a series of metabolic alterations, leading to damaging events in different tissues. Among these alterations, both increased polyol pathway flux and oxidative stress are considered to play relevant roles in the response of different cells. In this work, the effect on a human lens epithelial cell line of stress conditions, consisting of exposure to either high glucose levels or to the lipid peroxidation product 4-hydroxy-2-nonenal, is reported. The occurrence of osmotic imbalance, alterations of glutathione levels, and expression of inflammatory markers was monitored. A common feature of the two stress conditions was the expression of COX-2, which, only in the case of hyperglycemic stress, occurred through NF-κB activation. In our cell model, aldose reductase activity, which is confirmed as the only activity responsible for the osmotic imbalance occurring in hyperglycemic conditions, seemed to have no role in controlling the onset of the inflammatory phenomena. However, it played a relevant role in cellular detoxification against lipid peroxidation products. These results, in confirming the multifactorial nature of the inflammatory phenomena, highlight the dual role of aldose reductase as having both damaging but also protecting activity, depending on stress conditions.

20.
Biomolecules ; 12(4)2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35454074

RESUMO

Aldose reductase, classified within the aldo-keto reductase family as AKR1B1, is an NADPH dependent enzyme that catalyzes the reduction of hydrophilic as well as hydrophobic aldehydes. AKR1B1 is the first enzyme of the so-called polyol pathway that allows the conversion of glucose into sorbitol, which in turn is oxidized to fructose by sorbitol dehydrogenase. The activation of the polyol pathway in hyperglycemic conditions is generally accepted as the event that is responsible for a series of long-term complications of diabetes such as retinopathy, cataract, nephropathy and neuropathy. The role of AKR1B1 in the onset of diabetic complications has made this enzyme the target for the development of molecules capable of inhibiting its activity. Virtually all synthesized compounds have so far failed as drugs for the treatment of diabetic complications. This failure may be partly due to the ability of AKR1B1 to reduce alkenals and alkanals, produced in oxidative stress conditions, thus acting as a detoxifying agent. In recent years we have proposed an alternative approach to the inhibition of AKR1B1, suggesting the possibility of a differential inhibition of the enzyme through molecules able to preferentially inhibit the reduction of either hydrophilic or hydrophobic substrates. The rationale and examples of this new generation of aldose reductase differential inhibitors (ARDIs) are presented.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Aldeído Redutase/química , Complicações do Diabetes/tratamento farmacológico , Inibidores Enzimáticos/química , Glucose/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA