Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 111(18): 6810-5, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24753587

RESUMO

Dystroglycan (DG), a cell adhesion molecule well known to be essential for skeletal muscle integrity and formation of neuromuscular synapses, is also present at inhibitory synapses in the central nervous system. Mutations that affect DG function not only result in muscular dystrophies, but also in severe cognitive deficits and epilepsy. Here we demonstrate a role of DG during activity-dependent homeostatic regulation of hippocampal inhibitory synapses. Prolonged elevation of neuronal activity up-regulates DG expression and glycosylation, and its localization to inhibitory synapses. Inhibition of protein synthesis prevents the activity-dependent increase in synaptic DG and GABAA receptors (GABAARs), as well as the homeostatic scaling up of GABAergic synaptic transmission. RNAi-mediated knockdown of DG blocks homeostatic scaling up of inhibitory synaptic strength, as does knockdown of like-acetylglucosaminyltransferase (LARGE)--a glycosyltransferase critical for DG function. In contrast, DG is not required for the bicuculline-induced scaling down of excitatory synaptic strength or the tetrodotoxin-induced scaling down of inhibitory synaptic strength. The DG ligand agrin increases GABAergic synaptic strength in a DG-dependent manner that mimics homeostatic scaling up induced by increased activity, indicating that activation of this pathway alone is sufficient to regulate GABAAR trafficking. These data demonstrate that DG is regulated in a physiologically relevant manner in neurons and that DG and its glycosylation are essential for homeostatic plasticity at inhibitory synapses.


Assuntos
Distroglicanas/metabolismo , Neurônios GABAérgicos/metabolismo , Plasticidade Neuronal/fisiologia , Agrina/metabolismo , Animais , Distroglicanas/antagonistas & inibidores , Distroglicanas/genética , Feminino , Glicosilação , Hipocampo/metabolismo , Homeostase , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Mutação , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapses/metabolismo
2.
J Neurosci ; 34(24): 8300-17, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24920633

RESUMO

Whereas both GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) play a role in control of dorsal horn neuron excitability, their relative contribution to inhibition of small diameter primary afferent terminals remains controversial. To address this, we designed an approach for quantitative analyses of the distribution of GABA(A)R-subunits, GlyR α1-subunit and their anchoring protein, gephyrin, on terminals of rat spinal sensory afferents identified by Calcitonin-Gene-Related-Peptide (CGRP) for peptidergic terminals, and by Isolectin-B4 (IB4) for nonpeptidergic terminals. The approach was designed for light microscopy, which is compatible with the mild fixation conditions necessary for immunodetection of several of these antigens. An algorithm was designed to recognize structures with dimensions similar to those of the microscope resolution. To avoid detecting false colocalization, the latter was considered significant only if the degree of pixel overlap exceeded that expected from randomly overlapping pixels given a hypergeometric distribution. We found that both CGRP(+) and IB4(+) terminals were devoid of GlyR α1-subunit and gephyrin. The α1 GABA(A)R was also absent from these terminals. In contrast, the GABA(A)R α2/α3/α5 and ß3 subunits were significantly expressed in both terminal types, as were other GABA(A)R-associated-proteins (α-Dystroglycan/Neuroligin-2/Collybistin-2). Ultrastructural immunocytochemistry confirmed the presence of GABA(A)R ß3 subunits in small afferent terminals. Real-time quantitative PCR (qRT-PCR) confirmed the results of light microscopy immunochemical analysis. These results indicate that dorsal horn inhibitory synapses follow different rules of organization at presynaptic versus postsynaptic sites (nociceptive afferent terminals vs inhibitory synapses on dorsal horn neurons). The absence of gephyrin clusters from primary afferent terminals suggests a more diffuse mode of GABA(A)-mediated transmission at presynaptic than at postsynaptic sites.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Neurônios Aferentes/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores de GABA-A/metabolismo , Medula Espinal/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Lectinas/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de Glicina/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(17): 7863-8, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20385823

RESUMO

Schizophrenia likely results from poorly understood genetic and environmental factors. We studied the gene encoding the synaptic protein SHANK3 in 285 controls and 185 schizophrenia patients with unaffected parents. Two de novo mutations (R1117X and R536W) were identified in two families, one being found in three affected brothers, suggesting germline mosaicism. Zebrafish and rat hippocampal neuron assays revealed behavior and differentiation defects resulting from the R1117X mutant. As mutations in SHANK3 were previously reported in autism, the occurrence of SHANK3 mutations in subjects with a schizophrenia phenotype suggests a molecular genetic link between these two neurodevelopmental disorders.


Assuntos
Proteínas de Transporte/genética , Mutação de Sentido Incorreto/genética , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Esquizofrenia/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Primers do DNA/genética , Feminino , Humanos , Masculino , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Linhagem , Ratos , Análise de Sequência de DNA , Peixe-Zebra
4.
Hum Genet ; 130(4): 563-73, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21424692

RESUMO

Growing genetic evidence is converging in favor of common pathogenic mechanisms for autism spectrum disorders (ASD), intellectual disability (ID or mental retardation) and schizophrenia (SCZ), three neurodevelopmental disorders affecting cognition and behavior. Copy number variations and deleterious mutations in synaptic organizing proteins including NRXN1 have been associated with these neurodevelopmental disorders, but no such associations have been reported for NRXN2 or NRXN3. From resequencing the three neurexin genes in individuals affected by ASD (n = 142), SCZ (n = 143) or non-syndromic ID (n = 94), we identified a truncating mutation in NRXN2 in a patient with ASD inherited from a father with severe language delay and family history of SCZ. We also identified a de novo truncating mutation in NRXN1 in a patient with SCZ, and other potential pathogenic ASD mutations. These truncating mutations result in proteins that fail to promote synaptic differentiation in neuron coculture and fail to bind either of the established postsynaptic binding partners LRRTM2 or NLGN2 in cell binding assays. Our findings link NRXN2 disruption to the pathogenesis of ASD for the first time and further strengthen the involvement of NRXN1 in SCZ, supporting the notion of a common genetic mechanism in these disorders.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Transtornos Globais do Desenvolvimento Infantil/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Esquizofrenia/genética , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Ligação ao Cálcio , Estudos de Casos e Controles , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Criança , Chlorocebus aethiops , Estudos de Coortes , Feminino , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa , Neurônios/citologia , Neurônios/metabolismo , Linhagem , Homologia de Sequência de Aminoácidos
5.
Hum Mol Genet ; 17(24): 3965-74, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18801879

RESUMO

In a systematic sequencing screen of synaptic genes on the X chromosome, we have identified an autistic female without mental retardation (MR) who carries a de novo frameshift Ile367SerfsX6 mutation in Interleukin-1 Receptor Accessory Protein-Like 1 (IL1RAPL1), a gene implicated in calcium-regulated vesicle release and dendrite differentiation. We showed that the function of the resulting truncated IL1RAPL1 protein is severely altered in hippocampal neurons, by measuring its effect on neurite outgrowth activity. We also sequenced the coding region of the close related member IL1RAPL2 and of NCS-1/FREQ, which physically interacts with IL1RAPL1, in a cohort of subjects with autism. The screening failed to identify non-synonymous variant in IL1RAPL2, whereas a rare missense (R102Q) in NCS-1/FREQ was identified in one autistic patient. Furthermore, we identified by comparative genomic hybridization a large intragenic deletion of exons 3-7 of IL1RAPL1 in three brothers with autism and/or MR. This deletion causes a frameshift and the introduction of a premature stop codon, Ala28GlufsX15, at the very beginning of the protein. All together, our results indicate that mutations in IL1RAPL1 cause a spectrum of neurological impairments ranging from MR to high functioning autism.


Assuntos
Transtorno Autístico/genética , Cálcio/fisiologia , Proteína Acessória do Receptor de Interleucina-1/genética , Deleção de Sequência/genética , Animais , Síndrome de Asperger/genética , Síndrome de Asperger/patologia , Transtorno Autístico/patologia , Sequência de Bases , Diferenciação Celular/genética , Linhagem Celular , Criança , Códon sem Sentido/genética , Feminino , Mutação da Fase de Leitura , Triagem de Portadores Genéticos , Hipocampo/metabolismo , Hipocampo/patologia , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Proteína Acessória do Receptor de Interleucina-1/fisiologia , Masculino , Neuritos/metabolismo , Neuritos/patologia , Linhagem , Ratos
6.
J Cell Biol ; 157(7): 1279-90, 2002 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12082085

RESUMO

Laminin-1 is essential for early embryonic basement membrane assembly and differentiation. Several steps can be distinguished, i.e., the expression of laminin and companion matrix components, their accumulation on the cell surface and assembly into basement membrane between endoderm and inner cell mass, and the ensuing differentiation of epiblast. In this study, we used differentiating embryoid bodies derived from mouse embryonic stem cells null for gamma1-laminin, beta1-integrin and alpha/beta-dystroglycan to dissect the contributions of laminin domains and interacting receptors to this process. We found that (a) laminin enables beta1-integrin-null embryoid bodies to assemble basement membrane and achieve epiblast with beta1-integrin enabling expression of the laminin alpha1 subunit; (b) basement membrane assembly and differentiation require laminin polymerization in conjunction with cell anchorage, the latter critically dependent upon a heparin-binding locus within LG module-4; (c) dystroglycan is not uniquely required for basement membrane assembly or initial differentiation; (d) dystroglycan and integrin cooperate to sustain survival of the epiblast and regulate laminin expression; and (e) laminin, acting via beta1-integrin through LG1-3 and requiring polymerization, can regulate dystroglycan expression.


Assuntos
Laminina/fisiologia , Receptores de Laminina/metabolismo , Células-Tronco/fisiologia , Animais , Apoptose , Membrana Basal/metabolismo , Membrana Basal/ultraestrutura , Sítios de Ligação , Diferenciação Celular , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Distroglicanas , Heparina/metabolismo , Integrina beta1/metabolismo , Laminina/química , Laminina/genética , Laminina/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Modelos Moleculares , Mutação , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Células-Tronco/ultraestrutura
7.
Neuron ; 37(3): 417-31, 2003 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-12575950

RESUMO

The Fragile X mental retardation-1 (Fmr1) gene encodes a multifunctional protein, FMRP, with intrinsic RNA binding activity. We have developed an approach, antibody-positioned RNA amplification (APRA), to identify the RNA cargoes associated with the in vivo configured FMRP messenger ribonucleoprotein (mRNP) complex. Using APRA as a primary screen, putative FMRP RNA cargoes were assayed for their ability to bind directly to FMRP using traditional methods of assessing RNA-protein interactions, including UV-crosslinking and filter binding assays. Approximately 60% of the APRA-defined mRNAs directly associate with FMRP. By examining a subset of these mRNAs and their encoded proteins in brain tissue from Fmr1 knockout mice, we have observed that some of these cargoes as well as the proteins they encode show discrete changes in abundance and/or differential subcellular distribution. These data are consistent with spatially selective regulation of multiple biological pathways by FMRP.


Assuntos
Síndrome do Cromossomo X Frágil/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Animais , Anticorpos Monoclonais , Sondas de DNA/imunologia , Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil/genética , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/imunologia , Purinas/metabolismo , Frações Subcelulares
8.
Matrix Biol ; 57-58: 106-123, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27964993

RESUMO

Previous work has shown that myotubes cultured on laminin-coated substrates form complex aggregates of synaptic proteins that are similar in shape and composition to neuromuscular junctions (NMJs). Here we show that laminin instructs the location of complex aggregates which form only on the lower surface when laminin is coated onto culture dishes but over the entire cell when laminin is added in solution. Silencing of myotubes by agents that block electrical activity (tetrodotoxin, verapamil) or by inhibitors of calmodulin dependent kinase (CaMKII) render the myotube permissive for the formation of complex aggregates. Treatment with laminin alone will facilitate the formation of complex aggregates hours later when myotubes are made permissive by inhibiting CaMKII. The AChR agonist carbachol disperses pre formed aggregates suggesting that non-permissiveness may involve active dispersal of AChRs. The permissive period requires ongoing protein synthesis. The latter may reflect a requirement for rapsyn, which turns over rapidly, and is necessary for aggregation. Consistent with this geldanamycin, an agent that increases rapsyn turnover disrupts complex aggregates. Agrin is well known to induce small clusters of AChRs but does not induce complex aggregates even though aggregate formation requires MuSK, a receptor tyrosine kinase activated by agrin. Dystroglycan (DG) is the major laminin receptor mediating complex aggregate formation with some contribution from ß1 integrins. In addition, there is a pool of CaMKII associated with DG. We discuss how these permissive and instructive mechanisms bear on NMJ formation in vivo.


Assuntos
Canais de Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Laminina/farmacologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Receptores Colinérgicos/metabolismo , Canais de Sódio/metabolismo , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Agrina/genética , Agrina/metabolismo , Animais , Benzoquinonas/farmacologia , Bungarotoxinas/química , Bungarotoxinas/farmacologia , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Carbacol/farmacologia , Linhagem Celular , Expressão Gênica , Lactamas Macrocíclicas/farmacologia , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/agonistas , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Receptores Colinérgicos/genética , Bloqueadores dos Canais de Sódio/farmacologia , Canais de Sódio/genética , Coloração e Rotulagem/métodos , Tetrodotoxina/farmacologia , Verapamil/farmacologia
9.
Front Aging Neurosci ; 9: 258, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824419

RESUMO

Synaptic transmission requires intricate coordination of the components involved in processing of incoming signals, formation and stabilization of synaptic machinery, neurotransmission and in all related signaling pathways. Changes to any of these components cause synaptic imbalance and disruption of neuronal circuitry. Extensive studies at the neuromuscular junction (NMJ) have greatly aided in the current understanding of synapses and served to elucidate the underlying physiology as well as associated adaptive and homeostatic processes. The heparan sulfate proteoglycan agrin is a vital component of the NMJ, mediating synaptic formation and maintenance in both brain and muscle, but very little is known about direct control of its expression. Here, we investigated the relationship between agrin and transcription factor early growth response-1 (Egr-1), as Egr-1 regulates the expression of many genes involved in synaptic homeostasis and plasticity. Using chromatin immunoprecipitation (ChIP), cell culture with cell lines derived from brain and muscle, and animal models, we show that Egr-1 binds to the AGRN gene locus and suppresses its expression. When compared with wild type (WT), mice deficient in Egr-1 (Egr-1-/-) display a marked increase in AGRN mRNA and agrin full-length and cleavage fragment protein levels, including the 22 kDa, C-terminal fragment in brain and muscle tissue homogenate. Because agrin is a crucial component of the NMJ, we explored possible physiological implications of the Egr-1-agrin relationship. In the diaphragm, Egr-1-/- mice display increased NMJ motor endplate density, individual area and area of innervation. In addition to increased density, soleus NMJs also display an increase in fragmented and faint endplates in Egr-1-/- vs. WT mice. Moreover, the soleus NMJ electrophysiology of Egr-1-/- mice revealed increased quantal content and motor testing showed decreased movement and limb muscle strength compared with WT. This study provides evidence for the potential involvement of a novel Egr-1-agrin pathway in synaptic homeostatic and compensatory mechanisms at the NMJ. Synaptic homeostasis is greatly affected by the process of aging. These and other data suggest that changes in Egr-1 expression may directly or indirectly promote age-related pathologies.

10.
Artigo em Inglês | MEDLINE | ID: mdl-26504901

RESUMO

The growing interest in scientometry stems from ethical concerns related to the proper evaluation of scientific contributions of an author working in a hard science. In the absence of a consensus, institutions may use arbitrary methods for evaluating scientists for employment and promotion. There are several indices in use that attempt to establish the most appropriate and suggestive position of any scientist in the field he/she works in. A scientist's Hirsch-index (h-index) quantifies their total effective published output, but h-index summarizes the total value of their published work without regard to their contribution to each publication. Consequently, articles where the author was a primary contributor carry the same weight as articles where the author played a minor role. Thus, we propose an updated h-index named Hirsch(p,t)-index that informs about both total scientific output and output where the author played a primary role. Our measure, h(p,t) = h(p),h(t), is composed of the h-index h(t) and the h-index calculated for articles where the author was a key contributor; i.e. first/shared first or senior or corresponding author. Thus, a h(p,t) = 5,10 would mean that the author has 5 articles as first, shared first, senior or corresponding author with at least 5 citations each, and 10 total articles with at least 10 citations each. This index can be applied in biomedical disciplines and in all areas where the first and last position on an article are the most important. Although other indexes, such as r- and w-indexes, were proposed for measuring the authors output based on the position of researchers within the published articles, our simpler strategy uses the already established algorithms for h-index calculation and may be more practical to implement.

11.
Dev Neurobiol ; 74(2): 85-112, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24218108

RESUMO

Autism spectrum disorders (ASD) are associated with mutations in a host of genes including a number that function in synaptic transmission. Phelan McDermid syndrome involves mutations in SHANK3 which encodes a protein that forms a scaffold for glutamate receptors at the synapse. SHANK3 is one of the genes that underpins the synaptic hypothesis for ASD. We discuss this hypothesis with a view to the broader context of ASD and with special emphasis on highly penetrant genetic disorders including Shankopathies. We propose a blueprint for near and longer-term goals for fundamental and translational research on Shankopathies.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/genética , Proteínas do Tecido Nervoso/genética , Animais , Criança , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/terapia , Previsões , Interação Gene-Ambiente , Humanos , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Pesquisa/tendências , Transmissão Sináptica/fisiologia
12.
Dev Neurobiol ; 73(5): 333-53, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22949126

RESUMO

In response to a wound, astrocytes in culture extend microtubule-rich processes and polarize, orienting their centrosomes and Golgi apparatus woundside. ß1 Integrin null astrocytes fail to extend processes toward the wound, and are disoriented, and often migrate away orthogonal, to the wound. The centrosome is unusually fragmented in ß1 integrin null astrocytes. Expression of a ß1 integrin cDNA in the null background yields cells with intact centrosomes that polarize and extend processes normally. Fragmented centrosomes rapidly assemble following integrin ligation and cell attachment. However, several experiments indicated that cell adhesion is not necessary. For example, astrocytes in suspension expressing a chimeric ß1 subunit that can be activated by an antibody assemble centrosomes suggesting that ß1 activation is sufficient to cause centrosome assembly in the absence of cell adhesion. siRNA knockdown of PCM1, a major centrosomal protein, inhibits cell polarization, consistent with the notion that centrosomes are necessary for polarity and that integrins regulate polarity via centrosome integrity. Screening inhibitors of molecules downstream of integrins indicate that neither FAK nor ILK is involved in regulation of centrosome integrity. In contrast, blebbistatin, a specific inhibitor of non-muscle myosin II (NMII), mimics the response of ß1 integrin null astrocytes by disrupting centrosome integrity and cell polarization. Blebbistatin also inhibits integrin-mediated centrosome assembly in astrocytes attaching to fibronectin, consistent with the hypothesis that NMII functions downstream of integrins in regulating centrosome integrity.


Assuntos
Astrócitos/ultraestrutura , Centrossomo/ultraestrutura , Integrina beta1/fisiologia , Cicatrização/fisiologia , Animais , Adesão Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Polaridade Celular , Células Cultivadas/fisiologia , Embrião de Galinha , DNA Complementar/genética , Matriz Extracelular/fisiologia , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Integrina beta1/biossíntese , Integrina beta1/genética , Camundongos , Miosina não Muscular Tipo IIB/antagonistas & inibidores , Miosina não Muscular Tipo IIB/fisiologia , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes de Fusão/fisiologia , Retina/citologia , Retina/embriologia , Suspensões
13.
PLoS One ; 5(5): e10488, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20463973

RESUMO

Mutations that diminish the function of the extracellular matrix receptor Dystroglycan (DG) result in muscular dystrophies, with associated neuronal migration defects in the brain and mental retardation e.g. Muscle Eye Brain Disease. To gain insight into the function of DG in the nervous system we initiated a study to examine its contribution to development of the eye of Drosophila melanogaster. Immuno-histochemistry showed that DG is concentrated on the apical surface of photoreceptors (R) cells during specification of cell-fate in the third instar larva and is maintained at this location through early pupal stages. In point mutations that are null for DG we see abortive R cell elongation during differentiation that first appears in the pupa and results in stunted R cells in the adult. Overexpression of DG in R cells results in a small but significant increase in their size. R cell differentiation defects appear at the same stage in a deficiency line Df(2R)Dg(248) that affects Dg and the neighboring mitochondrial ribosomal gene, mRpL34. In the adult, these flies have severely disrupted R cells as well as defects in the lens and ommatidia. Expression of an mRpL34 transgene rescues much of this phenotype. We conclude that DG does not affect neuronal commitment but functions R cell autonomously to regulate neuronal elongation during differentiation in the pupa. We discuss these findings in view of recent work implicating DG as a regulator of cell metabolism and its genetic interaction with mRpL34, a member of a class of mitochondrial genes essential for normal metabolic function.


Assuntos
Diferenciação Celular , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Distroglicanas/genética , Olho/patologia , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Linhagem da Célula , Sobrevivência Celular , Proteínas de Drosophila/metabolismo , Distroglicanas/metabolismo , Olho/metabolismo , Olho/ultraestrutura , Larva , Proteínas Mitocondriais/metabolismo , Mutação/genética , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Neurônios/ultraestrutura , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/patologia , Células Fotorreceptoras de Invertebrados/ultraestrutura , Proteínas Ribossômicas/metabolismo , Propriedades de Superfície , Transgenes/genética
14.
Dev Neurobiol ; 68(5): 559-74, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18188865

RESUMO

Monolayers of astrocytes in culture respond to a scrape wound by orienting towards the wound and extending processes that will repair it. We show here that they also upregulate the expression of extracellular matrix (ECM) proteins, laminin, and chondroitin sulfated proteoglycan, that are deposited in astrocytic scars in vivo. We have previously shown that the major functional ECM receptors on astrocytes are dystroglycan (DG) plus integrins alpha1beta1, alpha5beta1, alpha6beta1, and alphavbeta3. Consistent with this, laminin fragments that activate alpha1beta1 integrin, alpha6beta1 integrin, and DG all contribute to attachment. During astrocyte attachment, or process extension, integrins and DG are found at the leading edge of the lammelipodium, though they change in distribution with the extent of attachment and the alpha and beta subunits of DG can be spatially uncoupled. Functionally, inhibitory antibodies to DG and integrin alpha1beta1 or the RGD peptide all inhibit process extension, showing that ligand engagement of integrins and DG contribute to process extension. Astrocytes differentiated from DG or beta1 null ES cells respond very differently to wounding. The former fail to extend process and cell polarization is disrupted partially. However, beta1 null astrocytes not only fail to extend processes perpendicular to the wound, but cell polarization is completely disrupted and cells migrate randomly into the wound. We conclude that integrins are essential for astrocyte polarity.


Assuntos
Astrócitos/fisiologia , Distroglicanas/fisiologia , Integrina beta1/fisiologia , Integrinas/fisiologia , Microtúbulos/fisiologia , Cicatrização/fisiologia , Animais , Astrócitos/ultraestrutura , Adesão Celular/fisiologia , Diferenciação Celular/fisiologia , Polaridade Celular/fisiologia , Células Cultivadas , Células-Tronco Embrionárias/fisiologia , Matriz Extracelular/fisiologia , Imunofluorescência , Integrina alfa1beta1/metabolismo , Ratos , Ratos Sprague-Dawley , Frações Subcelulares/fisiologia
15.
J Biol Chem ; 281(19): 13365-13373, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16531403

RESUMO

The dystroglycan (DG) complex is involved in agrin-induced acetylcholine receptor clustering downstream of muscle-specific kinase where it regulates the stability of acetylcholine receptor aggregates as well as assembly of the synaptic basement membrane. We have previously proposed that this entails coordinate extracellular and intracellular interactions of its two subunits, alpha- and beta-DG. To assess the contribution of the extracellular and intracellular portions of DG, we have used adenoviruses to express full-length and deletion mutants of beta-DG in myotubes derived from wild-type embryonic stem cells or from cells null for DG. We show that alpha-DG is properly glycosylated and targeted to the myotube surface in the absence of beta-DG. Extracellular interactions of DG modulate the size and the microcluster density of agrin-induced acetylcholine receptor aggregates and are responsible for targeting laminin to these clusters. Thus, the association of alpha- and beta-DG in skeletal muscle may coordinate independent roles in signaling. We discuss how DG may regulate synapses through extracellular signaling functions of its alpha subunit.


Assuntos
Distroglicanas/metabolismo , Laminina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Receptores Colinérgicos/metabolismo , Agrina/metabolismo , Animais , Células Cultivadas , Distroglicanas/genética , Deleção de Genes , Regulação da Expressão Gênica , Camundongos , Ratos , Células-Tronco/metabolismo
16.
J Gen Virol ; 87(Pt 3): 673-678, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16476990

RESUMO

Dystroglycan (DG) is an extracellular matrix receptor necessary for the development of metazoans from flies to humans and is also an entry route for various pathogens. Lymphocytic choriomeningitis virus (LCMV), a member of the family Arenaviridae, infects by binding to alpha-DG. Here, the role of cholesterol lipid rafts in infection by LCMV via alpha-DG was investigated. The cholesterol-sequestering drugs methyl-beta-cyclodextrin (MbetaCD), filipin and nystatin inhibited the infectivity of LCMV selectively, but did not affect infection by vesicular stomatitis virus. Cholesterol loading after depletion with MbetaCD restored infectivity to control levels. DG was not found in lipid rafts identified with the raft marker ganglioside GM1. Treatment with MbetaCD, however, enhanced the solubility of DG. This may reflect the association of DG with cholesterol outside lipid rafts and suggests that association of DG with non-raft cholesterol is critical for infection by LCMV through alpha-DG.


Assuntos
Infecções por Arenaviridae/virologia , Colesterol/fisiologia , Distroglicanas/metabolismo , Vírus da Coriomeningite Linfocítica/fisiologia , Animais , Linhagem Celular , Colesterol/metabolismo , Distroglicanas/química , Camundongos , Solubilidade , Replicação Viral
17.
J Biol Chem ; 280(18): 18015-24, 2005 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15728588

RESUMO

Disruption of the dystroglycan gene in humans and mice leads to muscular dystrophies and nervous system defects including malformation of the brain and defective synaptic transmission. To identify proteins that interact with dystroglycan in the brain we have used immunoaffinity purification followed by mass spectrometry (LC/MS-MS) and found that the GTPase dynamin 1 is a novel dystroglycan-associated protein. The beta-dystroglycan-dynamin 1 complex also included alpha-dystroglycan and Grb2. Overlay assays indicated that dynamin interacts directly with dystroglycan, and immunodepletion showed that only a pool of dynamin is associated with dystroglycan. Dystroglycan was associated and colocalized immunohistochemically with dynamin 1 in the central nervous system in the outer plexiform layer of retina where photoreceptor terminals are found. Endocytosis in neurons is both constitutive, as in non-neural cells, and regulated by neural activity. To assess the function of dystroglycan in the former, we have assayed transferrin uptake in fibroblastic cells differentiated from embryonic stem cells null for both dystroglycan alleles. In wild-type cells, dystroglycan formed a complex with dynamin and codistributed with cortactin at membrane ruffles, which are organelles implicated in endocytosis. Dystroglycan-null cells had a significantly greater transferrin uptake, a process well known to require dynamin. Expression of dystroglycan in null cells by infection with an adenovirus containing dystroglycan reduced transferrin uptake to levels seen in wild-type embryonic stem cells. These data suggest that dystroglycan regulates endocytosis possibly as a result of its interaction with dynamin.


Assuntos
Dinaminas/metabolismo , Distroglicanas/metabolismo , Endocitose/fisiologia , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Embrião de Mamíferos , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Ratos , Retina/enzimologia , Retina/metabolismo , Células-Tronco/enzimologia , Células-Tronco/metabolismo
18.
J Biol Chem ; 277(7): 4672-9, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11741881

RESUMO

Dystroglycan is part of the dystrophin-associated protein complex, which joins laminin in the extracellular matrix to dystrophin within the subsarcolemmal cytoskeleton. We have investigated how mutations in the components of the laminin-dystroglycan-dystrophin axis affect the organization and expression of dystrophin-associated proteins by comparing mice mutant for merosin (alpha(2)-laminin, dy), dystrophin (mdx), and dystroglycan (Dag1) using immunohistochemistry and immunoblots. We report that syntrophin and neuronal nitric-oxide synthase are depleted in muscle fibers lacking both dystrophin and dystroglycan. Some fibers deficient in dystroglycan, however, localize dystrophin at the cell surface at levels similar to that in wild-type muscle. Nevertheless, these fibers have signs of degeneration/regeneration including increased cell surface permeability and central nuclei. In these fibers, syntrophin and nitric-oxide synthase are also localized to the plasma membrane, whereas the sarcoglycan complex is disrupted. These results suggest a mechanism of membrane attachment for dystrophin independent of dystroglycan and that the interaction of sarcoglycans with dystrophin requires dystroglycan. The distribution of caveolin-3, a muscle-specific component of caveolae recently found to bind dystroglycan, was affected in dystroglycan- and dystrophin-deficient mice. We also examined alternative mechanisms of cell-extracellular matrix attachment to elucidate how the muscle basement membrane may subsist in the absence of dystroglycan, and we found the alpha(7B) splice variant of the alpha(7) integrin receptor subunit to be up-regulated. These results support the possibility that alpha(7B) integrin compensates in mediating cell-extracellular matrix attachment but cannot rescue the dystrophic phenotype.


Assuntos
Antígenos CD/biossíntese , Caveolinas/biossíntese , Proteínas do Citoesqueleto/fisiologia , Proteínas Associadas à Distrofina , Distrofina/metabolismo , Cadeias alfa de Integrinas , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Neurônios/enzimologia , Óxido Nítrico Sintase/metabolismo , Sarcolema/metabolismo , Processamento Alternativo , Animais , Antígenos CD/genética , Caveolina 3 , Creatina Quinase/sangue , Creatina Quinase/metabolismo , Citoplasma/metabolismo , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Detergentes/farmacologia , Distroglicanas , Embrião de Mamíferos/citologia , Éxons , Matriz Extracelular/metabolismo , Immunoblotting , Imuno-Histoquímica , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia Eletrônica , Músculo Esquelético/metabolismo , Músculos/metabolismo , Mutação , Octoxinol/farmacologia , Fenótipo , Ligação Proteica , Células-Tronco/metabolismo , Regulação para Cima
19.
Hum Mol Genet ; 13(4): 379-88, 2004 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-14681302

RESUMO

Utrophin has been studied extensively in recent years in an effort to find a cure for Duchenne muscular dystrophy. In this context, we previously showed that mice expressing enhanced muscle calcineurin activity (CnA*) displayed elevated levels of utrophin around their sarcolemma. In the present study, we therefore crossed CnA* mice with mdx mice to determine the suitability of elevating calcineurin activity in preventing the dystrophic pathology. Muscles from mdx/CnA* displayed increased nuclear localization of NFATc1 and a fiber type shift towards a slower phenotype. Measurements of utrophin levels in mdx/CnA* muscles revealed an approximately 2-fold induction in utrophin expression. Consistent with this induction, we also observed that members of the dystrophin-associated protein (DAP) complex were present at the sarcolemma of mdx/CnA* mouse muscle. This restoration of the utrophin-DAP complex was accompanied by significant reductions in the extent of central nucleation and fiber size variability. Importantly, assessment of myofiber sarcolemmal damage, as monitored by the intracellular presence of IgM and albumin as well as by Evans blue uptake in vivo, revealed a net amelioration of membrane integrity. Finally, immunofluorescence experiments using Mac-1 antibodies showed a reduction in the number of infiltrating immune cells in muscles from mdx/CnA* mice. These results show that elevated calcineurin activity attenuates the dystrophic pathology and thus provides an effective target for pharmacological intervention.


Assuntos
Calcineurina/metabolismo , Membrana Celular/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Sarcolema/metabolismo , Animais , Membrana Celular/patologia , Proteínas de Ligação a DNA , Distrofina/metabolismo , Azul Evans/química , Antígeno de Macrófago 1/imunologia , Camundongos , Camundongos Endogâmicos mdx , Camundongos Transgênicos , Fibras Musculares Esqueléticas/imunologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/imunologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Fatores de Transcrição NFATC , Proteínas Nucleares , Sarcolema/patologia , Transdução de Sinais , Fatores de Transcrição , Utrofina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA