Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Int J Mol Sci ; 19(4)2018 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-29570632

RESUMO

In the last few years, non-coding RNAs (ncRNAs) have been a hot topic in cancer research. Many ncRNAs were found to regulate the apoptotic process and to play a role in tumor cell resistance to treatment. The apoptotic program is on the frontline as self-defense from cancer onset, and evasion of apoptosis has been classified as one of the hallmarks of cancer responsible for therapy failure. The B-cell lymphoma 2 (BCL-2) family members are key players in the regulation of apoptosis and mediate the activation of the mitochondrial death machinery in response to radiation, chemotherapeutic agents and many targeted therapeutics. The balance between the pro-survival and the pro-apoptotic BCL-2 proteins is strictly controlled by ncRNAs. Here, we highlight the most common mechanisms exerted by microRNAs, long non-coding RNAs and circular RNAs on the main mediators of the intrinsic apoptotic cascade with particular focus on their significance in cancer biology.


Assuntos
Apoptose/fisiologia , Neoplasias/genética , RNA não Traduzido/genética , Animais , Apoptose/genética , Humanos , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia
2.
FASEB J ; 23(11): 3957-66, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19608627

RESUMO

MicroRNAs (miRs) are 21- to 23-nucleotide RNA molecules that regulate the stability or translational efficiency of target messenger RNAs of proteins involved in cell growth and apoptosis. miR-92 is part of the mir-17-92 cluster, which comprises members with an effect on cell proliferation. However, the role of miR-92 is unknown, and its targets have not been identified. Here, we describe a mechanism through which miR-92 contributes to regulate cell proliferation. Using a miR-92 synthetic double-strand oligonucleotide, we demonstrate that miR-92 increases 32D myeloid cell proliferation and 5-bromo-2-deoxyuridine (BrdU) incorporation and inhibits cell death. The effect is miR-92 specific since the miR-92 antagomir inhibits cell proliferation. Moreover, we show that miR-92 acts by modulating p63-isoform abundance through down-regulatation of endogenous DeltaNp63beta. Using luciferase reporters containing p63 3'UTR fragments with wild-type or mutant miR-92 complementary sites, we demonstrate that the wild-type 3'UTR is a direct target of miR-92. Finally, we observed that a miR-92-resistant DeltaNp63beta isoform (without 3'UTR) inhibits cell proliferation and parallels the effect of the antagomir. We conclude that one of the molecular mechanisms through which miR-92 increases cell proliferation is by negative regulation of an isoform of the cell-cycle regulator p63.


Assuntos
Antígenos CD/metabolismo , MicroRNAs/fisiologia , Células Mieloides/efeitos dos fármacos , Glicoproteínas da Membrana de Plaquetas/metabolismo , Regiões 3' não Traduzidas , Antígenos CD/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Glicoproteínas da Membrana de Plaquetas/efeitos dos fármacos , Isoformas de Proteínas/metabolismo , Tetraspanina 30
3.
J Exp Clin Cancer Res ; 39(1): 2, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31910865

RESUMO

BACKGROUND: Quiescent/slow cycling cells have been identified in several tumors and correlated with therapy resistance. However, the features of chemoresistant populations and the molecular factors linking quiescence to chemoresistance are largely unknown. METHODS: A population of chemoresistant quiescent/slow cycling cells was isolated through PKH26 staining (which allows to separate cells on the basis of their proliferation rate) from colorectal cancer (CRC) xenografts and subjected to global gene expression and pathway activation analyses. Factors expressed by the quiescent/slow cycling population were analyzed through lentiviral overexpression approaches for their ability to induce a dormant chemoresistant state both in vitro and in mouse xenografts. The correlation between quiescence-associated factors, CRC consensus molecular subtype and cancer prognosis was analyzed in large patient datasets. RESULTS: Untreated colorectal tumors contain a population of quiescent/slow cycling cells with stem cell features (quiescent cancer stem cells, QCSCs) characterized by a predetermined mesenchymal-like chemoresistant phenotype. QCSCs expressed increased levels of ZEB2, a transcription factor involved in stem cell plasticity and epithelial-mesenchymal transition (EMT), and of antiapototic factors pCRAF and pASK1. ZEB2 overexpression upregulated pCRAF/pASK1 levels resulting in increased chemoresistance, enrichment of cells with stemness/EMT traits and proliferative slowdown of tumor xenografts. In parallel, chemotherapy treatment of tumor xenografts induced the prevalence of QCSCs with a stemness/EMT phenotype and activation of the ZEB2/pCRAF/pASK1 axis, resulting in a chemotherapy-unresponsive state. In CRC patients, increased ZEB2 levels correlated with worse relapse-free survival and were strongly associated to the consensus molecular subtype 4 (CMS4) characterized by dismal prognosis, decreased proliferative rates and upregulation of EMT genes. CONCLUSIONS: These results show that chemotherapy-naive tumors contain a cell population characterized by a coordinated program of chemoresistance, quiescence, stemness and EMT. Such population becomes prevalent upon drug treatment and is responsible for chemotherapy resistance, thus representing a key target for more effective therapeutic approaches.


Assuntos
Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Células-Tronco Neoplásicas/metabolismo , Regulação para Cima , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , MAP Quinase Quinase Quinase 5/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Oxaliplatina/farmacologia , Prognóstico
4.
Mol Cancer Res ; 12(6): 878-89, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24637061

RESUMO

UNLABELLED: Let-7c, an intronic microRNA (miRNA) embedded in the long non-coding gene LINC00478, can act as a tumor suppressor by targeting oncogenes. Previous studies indicated that in acute promyelocytic leukemia (APL), a subtype of acute myelogenous leukemia (AML) bearing the leukemia promoting PML/RARα fusion protein, let-7c expression seems to be controlled by the host gene promoter, in which canonical Retinoic Acid Responsive Elements (RAREs) are bound by PML/RARα in an all transretinoic acid (ATRA)-sensitive manner. Here, let-7c transcriptional regulation was further investigated and a novel intronic promoter upstream of the pre-miRNA was identified. This new promoter has transcriptional activity strongly indicating that at least two promoters need to be considered for let-7c transcription: the distal host gene and the proximal intronic promoter. Therefore, epigenetic modifying enzymes and histone acetylation and methylation status were analyzed on both let-7c promoters. It was demonstrated that ATRA treatment leads to let-7c upregulation inducing a more open chromatin conformation of the host gene promoter, with an enrichment of epigenetic marks that correlate with a more active transcriptional state. Conversely, the epigenetic marks on the intronic promoter are not significantly affected by ATRA treatment. Interestingly, in solid tumors such as prostate and lung adenocarcinoma it was found that both host and intronic promoters are functional. These data suggest that while the host gene promoter may control let-7c expression in AML, in a nonleukemic tumor context instead the intronic promoter contributes or preferentially regulates let-7c transcription. IMPLICATIONS: Alternative promoter usage represents a regulatory mechanism of let-7c expression in different tissues. Mol Cancer Res; 12(6); 878-89. ©2014 AACR.


Assuntos
Leucemia Promielocítica Aguda/metabolismo , Leucemia/genética , MicroRNAs/biossíntese , Neoplasias/genética , Acetilação , Animais , Sequência de Bases , Linhagem Celular Tumoral , Epigenômica , Regulação Leucêmica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Histonas/genética , Histonas/metabolismo , Humanos , Íntrons , Leucemia/metabolismo , Leucemia Promielocítica Aguda/genética , MicroRNAs/genética , Dados de Sequência Molecular , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Transcrição Gênica , Transfecção , Tretinoína/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA