Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunology ; 164(2): 253-265, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34003488

RESUMO

In systemic lupus erythematosus (SLE), the clearance of apoptotic cells and microparticles (MPs) is reduced. Some MPs contain molecules that can modulate immune responses. This study aimed to evaluate the presence of miR-126 and miR-146a in plasma MPs of patients with SLE (SLE MPs) and analyse the ability of MPs to modulate some events in the promonocytic U937 cell line. Circulating MPs were isolated from plasma samples of healthy controls (HCs), patients with SLE and other autoimmune diseases (OAD). MPs were analysed for size and cell origin by flow cytometry and content of miR-126 and miR-146a by RT-qPCR. MPs were then added to U937 cell cultures to evaluate changes in cell phenotype, cytokine expression, content of miR-126 and miR-146a, and levels of IRF5. Patients with active SLE (aSLE) showed an increase in concentration of plasma MPs that positively correlated with the SLEDAI (SLE Disease Activity Index) score. CD14+ MPs were significantly more abundant in patients with SLE than HCs. SLE MPs contained decreased levels of miR-146a, but the miR-126 content in aSLE MPs was increased. The miR-126 content in SLE MPs correlated positively with the SLEDAI score. The treatment of U937 cells with MPs from HCs and patients induced reduced expression of HLA-DR, CD18 and CD119, increased frequency of IL-6+ and TNF-α+ cells, accumulation of IL-8 in culture supernatants, increased miR-126 levels and decreased miR-146a content, but no change in the expression of IRF5. These findings suggest that plasma MPs, especially SLE MPs, could modulate some biological events in U937 cells.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , MicroRNAs/metabolismo , Adolescente , Adulto , Linhagem Celular Tumoral , Citocinas/metabolismo , Feminino , Humanos , Masculino , Células U937 , Adulto Jovem
2.
Cell Rep ; 43(3): 113879, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38416647

RESUMO

Maintenance of CD4 T cells during chronic infections is vital for limiting pathogen burden and disease recrudescence. Although inhibitory receptor expression by CD4 T cells is commonly associated with immune suppression and exhaustion, such cell-intrinsic mechanisms that control activation are also associated with cell survival. Using a mouse model of visceral leishmaniasis (VL), we discovered a subset of lymphocyte activation gene 3 (LAG-3)-expressing CD4 T cells that co-express CXCR5. Although LAG3+CXCR5+ CD4 T cells are present in naive mice, they expand during VL. These cells express gene signatures associated with self-renewal capacity, suggesting progenitor-like properties. When transferred into Rag1-/- mice, these LAG3+CXCR5+ CD4 T cells differentiated into multiple effector types upon Leishmania donovani infection. The transcriptional repressor B cell lymphoma-6 was partially required for their maintenance. Altogether, we propose that the LAG3+CXCR5+ CD4 T cell subset could play a role in maintaining CD4 T cell responses during persistent infections.


Assuntos
Linfócitos T CD4-Positivos , Leishmaniose Visceral , Humanos , Subpopulações de Linfócitos T , Fatores de Transcrição , Receptores CXCR5
3.
Microbiol Spectr ; 11(4): e0509622, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37404188

RESUMO

Polyclonal B cell activation and the resulting hypergammaglobulinemia are a detrimental consequence of visceral leishmaniasis (VL); however, the mechanisms underlying this excessive production of nonprotective antibodies are still poorly understood. Here, we show that a causative agent of VL, Leishmania donovani, induces CD21-dependent formation of tunneling nanotubule (TNT)-like protrusions in B cells. These intercellular connections are used by the parasite to disseminate among cells and propagate B cell activation, and close contact both among the cells and between B cells and parasites is required to achieve this activation. Direct contact between cells and parasites is also observed in vivo, as L. donovani can be detected in the splenic B cell area as early as 14 days postinfection. Interestingly, Leishmania parasites can also glide from macrophages to B cells via TNT-like protrusions. Taken together, our results suggest that, during in vivo infection, B cells may acquire L. donovani from macrophages via TNT-like protrusions, and these connections are subsequently exploited by the parasite to disseminate among B cells, thus propagating B cell activation and ultimately leading to polyclonal B cell activation. IMPORTANCE Leishmania donovani is a causative agent of visceral leishmaniasis, a potentially lethal disease characterized by strong B cell activation and the subsequent excessive production of nonprotective antibodies, which are known to worsen the disease. How Leishmania activates B cells is still unknown, particularly because this parasite mostly resides inside macrophages and would not have access to B cells during infection. In this study, we describe for the first time how the protozoan parasite Leishmania donovani induces and exploits the formation of protrusions that connect B lymphocytes with each other or with macrophages and glides on these structures from one cell to another. In this way, B cells can acquire Leishmania from macrophages and become activated upon contact with the parasites. This activation will then lead to antibody production. These findings provide an explanation for how the parasite may propagate B cell activation during infection.


Assuntos
Leishmania donovani , Leishmaniose Visceral , Humanos , Leishmania donovani/fisiologia , Leishmaniose Visceral/parasitologia , Macrófagos
4.
JCI Insight ; 8(13)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37227774

RESUMO

HIV-1 infection is characterized by inflammation and a progressive decline in CD4+ T cell count. Despite treatment with antiretroviral therapy (ART), the majority of people living with HIV (PLWH) maintain residual levels of inflammation, a low degree of immune activation, and higher sensitivity to cell death in their memory CD4+ T cell compartment. To date, the mechanisms responsible for this high sensitivity remain elusive. We have identified the transcription factor IRF-5 to be involved in impairing the maintenance of murine CD4+ T cells during chronic infection. Here, we investigate whether IRF-5 also contributes to memory CD4+ T cell loss during HIV-1 infection. We show that TLR7 and IRF-5 were upregulated in memory CD4+ T cells from PLWH, when compared with naturally protected elite controllers and HIVfree participants. TLR7 was upstream of IRF-5, promoting Caspase 8 expression in CD4+ T cells from ART HIV-1+ but not from HIVfree donors. Interestingly, the TLR7/IRF-5 axis acted synergistically with the Fas/FasL pathway, suggesting that TLR7 and IRF-5 expression in ART HIV-1+ memory CD4+ T cells represents an imprint that predisposes cells to Fas-mediated apoptosis. This predisposition could be blocked using IRF-5 inhibitory peptides, suggesting IRF-5 blockade as a possible therapy to prevent memory CD4+ T cell loss in PLWH.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Camundongos , Animais , Linfócitos T CD4-Positivos , Receptor 7 Toll-Like/metabolismo , Apoptose , Inflamação/metabolismo
5.
Biores Open Access ; 4(1): 115-20, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26309788

RESUMO

Numerous reports have focused on consensus peptides to determine CD8+ T-cell responses; however, few studies evaluated the functional profile using peptides derived from circulating strains of a specific region. We determined the effector profile and maturation phenotype of CD8+ T-cells targeting the consensus APPEESFRS (AS9) epitope and its variant APPEESFRF (AF9), previously identified. The free energy of binding, maturation phenotype, and polyfunctional profile of both peptides were similar. The magnitude of CD8+ T-cell responses to AF9 was greater than the one elicited by AS9, although the difference was not significant. The polyfunctional profile of AF9 was characterized by CD107a/interleukin-2 (IL-2)/macrophage inflammatory protein beta (MIP1ß) and by interferon gamma (IFNγ)/MIP1ß/tumor necrosis factor alpha (TNFα) in response to AS9. TNFα production was significantly higher in response to AF9 than to AS9, and there was a negative correlation between the absolute number of CD8+ T-cell-producing TNFα and the plasma human immunodeficiency virus (HIV) load, suggesting a role of this cytokine in the control of HIV replication.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA