RESUMO
Congenital melanocytic naevus (CMN) syndrome, previously termed neurocutaneous melanosis, is a rare disease caused by postzygotic mosaic mutations occurring during embryogenesis in precursors of melanocytes. The severity of neurological manifestations in CMN patients is related to central nervous system abnormalities found at magnetic resonance imaging. The association between CMN and Dandy-Walker malformation (DWM) has been described in the literature, but recent advances in imaging and genetics lead to diagnostic criteria revision. In this paper, we aim to re-evaluate the proposed association by reviewing the available literature and present a patient with CMN and a large posterior fossa cyst.
Assuntos
Síndrome de Dandy-Walker , Melanose , Síndromes Neurocutâneas , Nevo Pigmentado , Humanos , Síndrome de Dandy-Walker/complicações , Síndrome de Dandy-Walker/diagnóstico por imagem , Nevo Pigmentado/complicações , Nevo Pigmentado/diagnóstico por imagem , Nevo Pigmentado/congênito , Melanose/diagnóstico , Melanose/patologia , Síndromes Neurocutâneas/complicações , Síndromes Neurocutâneas/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
The diverse cerebral consequences of preterm birth create significant challenges for understanding pathogenesis or predicting later outcome. Instead of focusing on describing effects common to the group, comparing individual infants against robust normative data offers a powerful alternative to study brain maturation. Here we used Gaussian process regression to create normative curves characterizing brain volumetric development in 274 term-born infants, modeling for age at scan and sex. We then compared 89 preterm infants scanned at term-equivalent age with these normative charts, relating individual deviations from typical volumetric development to perinatal risk factors and later neurocognitive scores. To test generalizability, we used a second independent dataset comprising of 253 preterm infants scanned using different acquisition parameters and scanner. We describe rapid, nonuniform brain growth during the neonatal period. In both preterm cohorts, cerebral atypicalities were widespread, often multiple, and varied highly between individuals. Deviations from normative development were associated with respiratory support, nutrition, birth weight, and later neurocognition, demonstrating their clinical relevance. Group-level understanding of the preterm brain disguises a large degree of individual differences. We provide a method and normative dataset that offer a more precise characterization of the cerebral consequences of preterm birth by profiling the individual neonatal brain.
Assuntos
Encéfalo/anatomia & histologia , Recém-Nascido Prematuro/fisiologia , Peso ao Nascer , Desenvolvimento Infantil , Cognição , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Recém-Nascido Prematuro/psicologia , Imageamento por Ressonância Magnética , Masculino , Distribuição Normal , Fenótipo , Gravidez , Nascimento Prematuro , Valores de Referência , Caracteres SexuaisRESUMO
INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Imageamento por Ressonância Magnética/métodos , Nascimento Prematuro/diagnóstico por imagem , Anisotropia , Encéfalo/crescimento & desenvolvimento , Espessura Cortical do Cérebro , Feminino , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Terceiro Trimestre da GravidezRESUMO
Preterm-born children are at increased risk of lifelong neurodevelopmental difficulties. Group-wise analyses of magnetic resonance imaging show many differences between preterm- and term-born infants but do not reliably predict neurocognitive prognosis for individual infants. This might be due to the unrecognized heterogeneity of cerebral injury within the preterm group. This study aimed to determine whether atypical brain microstructural development following preterm birth is significantly variable between infants. Using Gaussian process regression, a technique that allows a single-individual inference, we characterized typical variation of brain microstructure using maps of fractional anisotropy and mean diffusivity in a sample of 270 term-born neonates. Then, we compared 82 preterm infants to these normative values to identify brain regions with atypical microstructure and relate observed deviations to degree of prematurity and neurocognition at 18 months. Preterm infants showed strikingly heterogeneous deviations from typical development, with little spatial overlap between infants. Greater and more extensive deviations, captured by a whole brain atypicality index, were associated with more extreme prematurity and predicted poorer cognitive and language abilities at 18 months. Brain microstructural development after preterm birth is highly variable between individual infants. This poorly understood heterogeneity likely relates to both the etiology and prognosis of brain injury.
Assuntos
Encéfalo/patologia , Recém-Nascido Prematuro/crescimento & desenvolvimento , Nascimento Prematuro/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Transtornos do Neurodesenvolvimento/epidemiologia , Transtornos do Neurodesenvolvimento/etiologia , GravidezRESUMO
Informal caregivers of people with Alzheimer's Disease and Related Dementias (ADRD) experience unique stressors, reduced quality of life, and report poorer health, compared to non-caregivers. Throughout the last thirty years, researchers have developed and tested various psychosocial interventions and their ability to improve caregiver health. Due to an exclusive focus on self-report methods, however, no existing systematic literature reviews specifically examine intervention studies employing biomarkers; this systematic review aims to address this gap in the literature. In each database (PubMed and Web of Science, respectively), a title search was conducted with the following keywords: "alzheimer*" OR "dementia" AND "caregiv*" AND "intervention", followed by a second search using identical keywords except "intervention" was replaced with "program." Study or intervention protocol articles, exclusively qualitative studies, cultural applicability papers, dissemination studies, descriptive articles or program reports, acceptability/feasibility studies, studies utilizing formal caregiving samples, commentaries, review papers, and meta-analyses, erratums/corrections, measure development articles, factor analyses, and case reports were excluded from the final pool of studies. In this systematic review, the findings of 14 studies are summarized, and are organized based on specific types of biomarkers: neuroendocrine, immune, and autonomic physiological. Overall, the review yielded mixed results, which may, in part, be due to differences in the types of interventions tested, as well as differing biomarker measurement, methodology, and analysis. More biobehavioral intervention trials are needed among ADRD caregivers. Including biological parameters as pre- and post-measures can shed insight into the extent to which interventions may help caregivers heal from the stress of caregiving.
RESUMO
Barth syndrome (BTHS) is a rare mitochondrial disease caused by pathogenic variants in the gene TAFAZZIN, which leads to abnormal cardiolipin (CL) metabolism on the inner mitochondrial membrane. Although TAFAZZIN is ubiquitously expressed, BTHS involves a complex combination of tissue specific phenotypes including cardiomyopathy, neutropenia, skeletal myopathy, and growth delays, with a relatively minimal neurological burden. To understand both the developmental and functional effects of TAZ-deficiency in different tissues, we generated isogenic TAZ knockout (TAZ- KO) and WT cardiomyocytes (CMs) and neural progenitor cells (NPCs) from CRISPR-edited induced pluripotent stem cells (iPSCs). In TAZ-KO CMs we discovered evidence of dysregulated mitophagy including dysmorphic mitochondria and mitochondrial cristae, differential expression of key autophagy-associated genes, and an inability of TAZ-deficient CMs to properly initiate stress-induced mitophagy. In TAZ-deficient NPCs we identified novel phenotypes including a reduction in CIV abundance and CIV activity in the CIII2&CIV2 intermediate complex. Interestingly, while CL acyl chain manipulation was unable to alter mitophagy defects in TAZ-KO CMs, we found that linoleic acid or oleic acid supplementation was able to partially restore CIV abundance in TAZ-deficient NPCs. Taken together, our results have implications for understanding the tissue-specific pathology of BTHS and potential for tissue-specific therapeutic targeting. Moreover, our results highlight an emerging role for mitophagy in the cardiac pathophysiology of BTHS and reveal a potential neuron-specific bioenergetic phenotype.
RESUMO
Background Infants with congenital heart disease (CHD) are at risk of neurodevelopmental impairments, which may be associated with impaired brain growth. We characterized how perioperative brain growth in infants with CHD deviates from typical trajectories and assessed the relationship between individualized perioperative brain growth and clinical risk factors. Methods and Results A total of 36 infants with CHD underwent preoperative and postoperative brain magnetic resonance imaging. Regional brain volumes were extracted. Normative volumetric development curves were generated using data from 219 healthy infants. Z-scores, representing the degree of positive or negative deviation from the normative mean for age and sex, were calculated for regional brain volumes from each infant with CHD before and after surgery. The degree of Z-score change was correlated with clinical risk factors. Perioperative growth was impaired across the brain, and it was associated with longer postoperative intensive care stay (false discovery rate P<0.05). Higher preoperative creatinine levels were associated with impaired brainstem, caudate nuclei, and right thalamus growth (all false discovery rate P=0.033). Older postnatal age at surgery was associated with impaired brainstem and right lentiform growth (both false discovery rate P=0.042). Longer cardiopulmonary bypass duration was associated with impaired brainstem and right caudate growth (false discovery rate P<0.027). Conclusions Infants with CHD can have impaired brain growth in the immediate postoperative period, the degree of which associates with postoperative intensive care duration. Brainstem growth appears particularly vulnerable to perioperative clinical course, whereas impaired deep gray matter growth was associated with multiple clinical risk factors, possibly reflecting vulnerability of these regions to short- and long-term hypoxic injury.
Assuntos
Encéfalo , Cardiopatias Congênitas , Humanos , Lactente , Encéfalo/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/cirurgia , Imageamento por Ressonância Magnética/métodos , Fatores de RiscoRESUMO
The Developing Human Connectome Project has created a large open science resource which provides researchers with data for investigating typical and atypical brain development across the perinatal period. It has collected 1228 multimodal magnetic resonance imaging (MRI) brain datasets from 1173 fetal and/or neonatal participants, together with collateral demographic, clinical, family, neurocognitive and genomic data from 1173 participants, together with collateral demographic, clinical, family, neurocognitive and genomic data. All subjects were studied in utero and/or soon after birth on a single MRI scanner using specially developed scanning sequences which included novel motion-tolerant imaging methods. Imaging data are complemented by rich demographic, clinical, neurodevelopmental, and genomic information. The project is now releasing a large set of neonatal data; fetal data will be described and released separately. This release includes scans from 783 infants of whom: 583 were healthy infants born at term; as well as preterm infants; and infants at high risk of atypical neurocognitive development. Many infants were imaged more than once to provide longitudinal data, and the total number of datasets being released is 887. We now describe the dHCP image acquisition and processing protocols, summarize the available imaging and collateral data, and provide information on how the data can be accessed.
RESUMO
OBJECTIVES: With increasing neuroimaging applications of contemporary three-dimensional T1W fast spin echo (3D T1W FSE) sequences, it was aimed to reappraise the normal patterns of skull base facial nerve gadolinium enhancement. METHODS: Pre- and post-gadolinium 3D T1W fast spin echo imaging studies (n = 64) were retrospectively analysed in patients without suspected facial nerve pathology. Two independent observers scored the signal at each of six skull base facial nerve segments. Wilcoxon signed-rank test was used to compare changes in signal between pre- and post-gadolinium sequences at each location, and how this differed between proprietary sequences or between the pairs of facial nerves. RESULTS: There was significant enhancement at the fundal canalicular (16%), geniculate ganglion (96%), tympanic (45%) and mastoid (38%) facial nerve segments (p < 0.05). Two different proprietary sequences demonstrated similar patterns of enhancement and there was symmetry between the two sides. CONCLUSIONS: There is a differing pattern of normal facial nerve enhancement on contemporary 3D T1W FSE sequences compared to previous studies of 2D T1W SE imaging and fundal canalicular enhancement may be physiological. ADVANCES IN KNOWLEDGE: This is the first study to evaluate patterns of normal facial nerve enhancement using contemporary 3D T1W FSE MRI sequences.
Assuntos
Nervo Facial/diagnóstico por imagem , Aumento da Imagem/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Meios de Contraste , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organometálicos , Valores de ReferênciaRESUMO
Inborn errors of metabolism (IEM) although individually rare, together constitute a significant proportion of childhood neurological disorders. Majority of these disorders occur due to deficiency of an enzyme in a specific metabolic pathway, leading to damage by accumulation of a toxic substrate or deficiency of an essential metabolite. Early diagnosis is crucial in many of these conditions to prevent or minimise brain damage. Whilst many of the neuroimaging features are nonspecific, certain disorders demonstrate specific patterns due to selective vulnerability of different structures to different insults. Along with clinical and biochemical profile, neuroimaging thus plays a pivotal role in differentiating metabolic disorders from other causes, in providing a differential diagnosis or suggesting a metabolic pathway derangement, and on occasion also helps make a specific diagnosis. This allows initiation of targeted metabolic and genetic work up and treatment. Familiarity with the clinical features, relevant biochemical features and neuroimaging findings of common metabolic disorders to facilitate a prompt diagnosis cannot thus be overemphasized. In this article, we describe the latest classification scheme, the clinical and biochemical clues and common radiological patterns. The diagnostic algorithm followed in daily practice after clinico-radiological phenotyping is alluded to and illustrated by clinical vignettes. Focused sections on neonatal metabolic disorders and mitochondrial disorders are also provided. The purpose of this article is to provide a brief overview and serve as a practical primer to clinical and radiological phenotypes and diagnostic aspects of IEM.
RESUMO
Infants with congenital heart disease are at risk of neurodevelopmental impairments, the origins of which are currently unclear. This study aimed to characterize the relationship between neonatal brain development, cerebral oxygen delivery and neurodevelopmental outcome in infants with congenital heart disease. A cohort of infants with serious or critical congenital heart disease (N = 66; N = 62 born ≥37 weeks) underwent brain MRI before surgery on a 3T scanner situated on the neonatal unit. T2-weighted images were segmented into brain regions using a neonatal-specific algorithm. We generated normative curves of typical volumetric brain development using a data-driven technique applied to 219 healthy infants from the Developing Human Connectome Project (dHCP). Atypicality indices, representing the degree of positive or negative deviation of a regional volume from the normative mean for a given gestational age, sex and postnatal age, were calculated for each infant with congenital heart disease. Phase contrast angiography was acquired in 53 infants with congenital heart disease and cerebral oxygen delivery was calculated. Cognitive and motor abilities were assessed at 22 months (N = 46) using the Bayley scales of Infant and Toddler Development-Third Edition. We assessed the relationship between atypicality indices, cerebral oxygen delivery and cognitive and motor outcome. Additionally, we examined whether cerebral oxygen delivery was associated with neurodevelopmental outcome through the mediating effect of brain volume. Negative atypicality indices in deep grey matter were associated with both reduced neonatal cerebral oxygen delivery and poorer cognitive abilities at 22 months across the whole sample. In infants with congenital heart disease born ≥37 weeks, negative cortical grey matter and total tissue volume atypicality indices, in addition to deep grey matter structures, were associated with poorer cognition. There was a significant indirect relationship between cerebral oxygen delivery and cognition through the mediating effect of negative deep grey matter atypicality indices across the whole sample. In infants born ≥37 weeks, cortical grey matter and total tissue volume atypicality indices were also mediators of this relationship. In summary, lower cognitive abilities in toddlers with congenital heart disease were associated with smaller grey matter volumes before cardiac surgery. The aetiology of poor cognition may encompass poor cerebral oxygen delivery leading to impaired grey matter growth. Interventions to improve cerebral oxygen delivery may promote early brain growth and improve cognitive outcomes in infants with congenital heart disease.
RESUMO
BACKGROUND: Interpretation of incidental findings on term neonatal MRI brain imaging can be challenging as there is a paucity of published normative data on asymptomatic term neonates. Reporting radiologists and clinicians need to be familiar with these incidental findings to avoid over-investigation and misinterpretation particularly in relation to neurodevelopmental outcome. This study aimed to determine the prevalence of incidental findings in a large group of asymptomatic term neonates participating in the Developing Human Connectome Project (dHCP) who were invited for neurodevelopmental assessment at 18 months. METHODS: We retrospectively reviewed MRI brain scans performed on 500 term neonates enrolled in the dHCP study between 2015 and 2019 with normal clinical examination. We reviewed the results of the Bayley Scales of Infant and Toddler Development (Bayley III) applied to participants who attended for neurodevelopmental follow-up at 18 months. Scores considered "delayed" if <70 on language, cognitive or motor scales. FINDINGS: Incidental findings were observed in 47% of term infants. Acute cerebral infarcts were incidentally noted in five neonates (1%). More common incidental findings included punctate white matter lesions (PWMLs) (12%) and caudothalamic subependymal cysts (10%). The most frequent incidental finding was intracranial haemorrhage (25%), particularly subdural haemorrhage (SDH). SDH and PWMLs were more common in infants delivered with ventouse-assistance versus other delivery methods.Neurodevelopmental results were available on 386/500 (77%). 14 infants had a language score < 70 (2 SD below the mean). Of the 386 infants with neurodevelopmental follow up at 18 months, group differences in motor and language scores between infants with and without incidental findings were not significant (p = 0·17 and p = 0·97 respectively). Group differences in cognitive scores at 18 months between infants with (median (interquartile range) -100 (95-105)) and without (100 (95-110)) incidental findings were of small effect size to suggest clinical significance (Cliff's d = 0·15; p<0·05). INTERPRETATION: Incidental findings are relatively common on brain MRI in asymptomatic term neonates, majority are clinically insignificant with normal neurodevelopment at 18 months. FUNDING: This work was supported by the European Research Council under the European Union's Seventh Framework Programme (FP7/20072013/ERC grant agreement no. [319456] dHCP project), by core funding from the Wellcome/EPSRC Centre for Medical Engineering [WT203148/Z/16/Z] and by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London and/or the NIHR Clinical Research Facility. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
RESUMO
OBJECTIVE: We conducted an extensive review of the literature relevant to inner ear measurements in normal and malformative conditions to select reproducible methods and normative ranges that may be used in clinical practice. DATA SOURCES AND STUDY SELECTION: A review of the published literature was performed in the English language using PubMed with appropriate keywords. We selected only those articles containing normative values of inner ear structures. DATA EXTRACTION AND DATA SYNTHESIS: The following measurements were identified as reproducible and sensitive for the diagnosis of inner malformations: cochlear height in coronal plane; maximal diameter of bony island of lateral semicircular canal; width of vestibular aqueduct: 1) at midpoint; 2) at operculum in axial plane; cochlear canal and cochlear width in multiplanar reconstructions (MPR)/axial; cochlear length. The following cutoffs for normal inner ears are proposed based on the comparative analysis of the literature: cochlea height: >4.3âmm; lateral semicircular canal bony island: >3âmm; vestibular aqueduct: <0.9 (midpoint) and <1.9âmm (operculum); cochlear canal (axial MPR): >1.4âmm and <2.5âmm; cochlear width (MPR): >5.4âmm. CONCLUSION: Measurements of inner ear structures can help in the interpretation of computed tomography images. They increase the sensitivity in detecting inner ear malformations, especially cochlear hypoplasia now considered more common than previously thought.
Assuntos
Orelha Interna/anormalidades , Orelha Interna/diagnóstico por imagem , Criança , Feminino , Humanos , Masculino , Tomografia Computadorizada por Raios X/métodosRESUMO
The recently published 2016 World Health Organization (WHO) classification of tumours of the Central Nervous System (CNS) introduces a number of significant changes from the previous edition. Based on an improved understanding of the genetic and molecular basis of tumorigenesis there has been a shift towards defining tumours by means of these characteristics in addition to their histological features, thus providing an integrated diagnosis. In this article, we will provide a concise overview of the salient changes in the 2016 WHO classification of tumours of the CNS that are of relevance to the paediatric neuroradiologist when it comes to day-to-day reporting.
RESUMO
OBJECTIVE: To assess whether there was any relationship between the number of clinical markers for spinal dysraphism and its presence on ultrasound and whether there was any relationship between the presence of an isolated sacral dimple and the presence of spinal dysraphism. Outcomes and further imaging were also examined. METHODS: All patients who underwent spinal ultrasound (SUS) in University Hospital Galway (UHG) over a 5-year period (2006-2011) were identified. Patients were excluded based on age (>14 years old excluded) and indication for imaging (only patients being investigated for suspected spinal dysraphism were included). Indications for imaging, ultrasound results and information on further imaging were accessed from the computerised radiology software in UHG. Statistical analysis was performed using SPSS-18. RESULTS: Data were analysed for 216 patients. A single clinical indication was recorded for 174 ultrasound requests, ≥2 indications for 42 requests. Nineteen of 216 (8.8%) ultrasound images were abnormal, 7 having spinal dysraphism. Multiple clinical indications were 6 times more likely to have dysraphism than those imaged on the basis of a single marker (OR 6.0, 95% CI 1.289 to 27.922, p=0.022), and there was no significant correlation between the presence of a sacral dimple and the presence of dysraphism (95% CI 0.71 to 6.622, p=0.722). CONCLUSIONS: SUS performed on the basis of multiple clinical indications is six times more likely to detect spinal dysraphism than imaging performed for isolated abnormalities or risk factors. Sacral dimple is a poor marker for occult spinal pathology.