Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983849

RESUMO

RAS is a signaling protein associated with the cell membrane that is mutated in up to 30% of human cancers. RAS signaling has been proposed to be regulated by dynamic heterogeneity of the cell membrane. Investigating such a mechanism requires near-atomistic detail at macroscopic temporal and spatial scales, which is not possible with conventional computational or experimental techniques. We demonstrate here a multiscale simulation infrastructure that uses machine learning to create a scale-bridging ensemble of over 100,000 simulations of active wild-type KRAS on a complex, asymmetric membrane. Initialized and validated with experimental data (including a new structure of active wild-type KRAS), these simulations represent a substantial advance in the ability to characterize RAS-membrane biology. We report distinctive patterns of local lipid composition that correlate with interfacially promiscuous RAS multimerization. These lipid fingerprints are coupled to RAS dynamics, predicted to influence effector binding, and therefore may be a mechanism for regulating cell signaling cascades.


Assuntos
Membrana Celular/enzimologia , Lipídeos/química , Aprendizado de Máquina , Simulação de Dinâmica Molecular , Multimerização Proteica , Proteínas Proto-Oncogênicas p21(ras)/química , Transdução de Sinais , Humanos
2.
Biophys J ; 121(19): 3630-3650, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-35778842

RESUMO

During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.


Assuntos
Cisteína , Proteínas Proto-Oncogênicas c-raf , Sítios de Ligação , Membrana Celular/metabolismo , Cisteína/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-raf/química , Proteínas Proto-Oncogênicas c-raf/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Solventes/metabolismo
3.
Biotechnol Bioeng ; 117(3): 603-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31709513

RESUMO

Antimicrobial peptides (AMPs) are regarded as attractive alternatives to conventional antibiotics, but their production in microbes remains challenging due to their inherent bactericidal nature. To address these limitations, we have developed a novel AMP fusion protein system based on an encapsulin nanocompartment protein and have demonstrated its utility in enhancing expression of HBCM2, an AMP with activity against Gram-negative bacteria. Here, HBCM2 was fused to the N-terminus of several Encapsulin monomer (Enc) variants engineered with multiple TEV protease recognition site insertions to facilitate proteolytic release of the fused HBCM2. Fusion of HBCM2 to the Enc variants, but not other common carrier proteins, enabled robust overexpression in Escherichia coli C43(DE3) cells. Interestingly, variants with a TEV site insertion following residue K71 in Enc exhibited the highest overexpression and HBCM2 release efficiencies compared to other variants but were deficient in cage formation. HBCM2 was purified from the highest expressing variant following TEV protease digestion and was found to be highly active in inhibiting E. coli growth (MIC = 5 µg/ml). Our study demonstrates the potential use of the Enc system to enhance expression of AMPs for biomanufacturing and therapeutic applications.


Assuntos
Proteínas de Transporte , Proteínas Citotóxicas Formadoras de Poros , Proteínas Recombinantes de Fusão , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Endopeptidases/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Modelos Moleculares , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
4.
J Chem Phys ; 153(4): 045103, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32752727

RESUMO

We have implemented the Martini force field within Lawrence Livermore National Laboratory's molecular dynamics program, ddcMD. The program is extended to a heterogeneous programming model so that it can exploit graphics processing unit (GPU) accelerators. In addition to the Martini force field being ported to the GPU, the entire integration step, including thermostat, barostat, and constraint solver, is ported as well, which speeds up the simulations to 278-fold using one GPU vs one central processing unit (CPU) core. A benchmark study is performed with several test cases, comparing ddcMD and GROMACS Martini simulations. The average performance of ddcMD for a protein-lipid simulation system of 136k particles achieves 1.04 µs/day on one NVIDIA V100 GPU and aggregates 6.19 µs/day on one Summit node with six GPUs. The GPU implementation in ddcMD offloads all computations to the GPU and only requires one CPU core per simulation to manage the inputs and outputs, freeing up remaining CPU resources on the compute node for alternative tasks often required in complex simulation campaigns. The ddcMD code has been made open source and is available on GitHub at https://github.com/LLNL/ddcMD.

5.
Biophys J ; 113(10): 2271-2280, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29113676

RESUMO

Membrane lipid composition varies greatly within submembrane compartments, different organelle membranes, and also between cells of different cell stage, cell and tissue types, and organisms. Environmental factors (such as diet) also influence membrane composition. The membrane lipid composition is tightly regulated by the cell, maintaining a homeostasis that, if disrupted, can impair cell function and lead to disease. This is especially pronounced in the brain, where defects in lipid regulation are linked to various neurological diseases. The tightly regulated diversity raises questions on how complex changes in composition affect overall bilayer properties, dynamics, and lipid organization of cellular membranes. Here, we utilize recent advances in computational power and molecular dynamics force fields to develop and test a realistically complex human brain plasma membrane (PM) lipid model and extend previous work on an idealized, "average" mammalian PM. The PMs showed both striking similarities, despite significantly different lipid composition, and interesting differences. The main differences in composition (higher cholesterol concentration and increased tail unsaturation in brain PM) appear to have opposite, yet complementary, influences on many bilayer properties. Both mixtures exhibit a range of dynamic lipid lateral inhomogeneities ("domains"). The domains can be small and transient or larger and more persistent and can correlate between the leaflets depending on lipid mixture, Brain or Average, as well as on the extent of bilayer undulations.


Assuntos
Membrana Celular/metabolismo , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Neurônios/citologia , Humanos , Modelos Moleculares , Conformação Molecular
6.
PLoS Comput Biol ; 12(4): e1004831, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27119953

RESUMO

The γ-aminobutyric acid type A receptor (GABAA-R) is a major inhibitory neuroreceptor that is activated by the binding of GABA. The structure of the GABAA-R is well characterized, and many of the binding site residues have been identified. However, most of these residues are obscured behind the C-loop that acts as a cover to the binding site. Thus, the mechanism by which the GABA molecule recognizes the binding site, and the pathway it takes to enter the binding site are both unclear. Through the completion and detailed analysis of 100 short, unbiased, independent molecular dynamics simulations, we have investigated this phenomenon of GABA entering the binding site. In each system, GABA was placed quasi-randomly near the binding site of a GABAA-R homology model, and atomistic simulations were carried out to observe the behavior of the GABA molecules. GABA fully entered the binding site in 19 of the 100 simulations. The pathway taken by these molecules was consistent and non-random; the GABA molecules approach the binding site from below, before passing up behind the C-loop and into the binding site. This binding pathway is driven by long-range electrostatic interactions, whereby the electrostatic field acts as a 'funnel' that sweeps the GABA molecules towards the binding site, at which point more specific atomic interactions take over. These findings define a nuanced mechanism whereby the GABAA-R uses the general zwitterionic features of the GABA molecule to identify a potential ligand some 2 nm away from the binding site.


Assuntos
Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Sítios de Ligação , Biologia Computacional , Simulação por Computador , Humanos , Ativação do Canal Iônico , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas , Eletricidade Estática
7.
Microb Cell Fact ; 16(1): 71, 2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28446197

RESUMO

BACKGROUND: Recombinant expression of toxic proteins remains a challenging problem. One potential method to shield toxicity and thus improve expression of these proteins is to encapsulate them within protein compartments to sequester them away from their targets. Many bacteria naturally produce so-called bacterial microcompartments (BMCs) in which enzymes comprising a biosynthetic pathway are encapsulated in a proteinaeous shell, which is in part thought to shield the cells from the toxicity of reaction intermediates. As a proof-of-concept, we attempted to encapsulate toxic, lysis protein E (E) from bacteriophage ϕX174 inside recombinant BMCs to enhance its expression and achieve higher yields during downstream purification. RESULTS: E was fused with various N-terminal BMC targeting tags (PduP-, PduD-, and EutC-tags, 18-20 amino acids) and co-expressed with appropriate BMC shell proteins that associate with the tags and are required to form BMCs. Only BMC targeted E fusions, but not non-tagged E, could be successfully cloned, suggesting that the BMC tags reduce the toxicity of E. A PduP-tagged E system appeared to achieve the highest expression of E. Co-expression of Pdu BMC shell proteins with PduP-E increased its expression by 20-50%. Affinity purification of PduP-E via Ni-NTA in the presence of Empigen BB detergent yielded 270 µg of PduP-E per L of induced culture. Removal of the PduP-tag via proteolysis resulted in a final yield of 200 µg of E per L of induced culture, a nearly order of magnitude (~sevenfold) improvement compared to prior reports. CONCLUSIONS: These results demonstrate improved expression of ϕX174 lysis protein E via re-directed BMC systems and ultimately higher E purification yields. Similar strategies can be used to enhance expression of other toxic proteins in recombinant Escherichia coli systems.


Assuntos
Escherichia coli/genética , Expressão Gênica , Proteínas Virais/biossíntese , Proteínas Virais/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Compartimento Celular , Meios de Cultura/química , Escherichia coli/citologia , Escherichia coli/metabolismo , Proteólise , Proteínas Recombinantes/biossíntese , Proteínas Virais/isolamento & purificação
8.
Proc Natl Acad Sci U S A ; 111(23): 8607-12, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24912155

RESUMO

Use of the highly toxic and easily prepared rodenticide tetramethylenedisulfotetramine (TETS) was banned after thousands of accidental or intentional human poisonings, but it is of continued concern as a chemical threat agent. TETS is a noncompetitive blocker of the GABA type A receptor (GABAAR), but its molecular interaction has not been directly established for lack of a suitable radioligand to localize the binding site. We synthesized [(14)C]TETS (14 mCi/mmol, radiochemical purity >99%) by reacting sulfamide with H(14)CHO and s-trioxane then completion of the sequential cyclization with excess HCHO. The outstanding radiocarbon sensitivity of accelerator mass spectrometry (AMS) allowed the use of [(14)C]TETS in neuroreceptor binding studies with rat brain membranes in comparison with the standard GABAAR radioligand 4'-ethynyl-4-n-[(3)H]propylbicycloorthobenzoate ([(3)H]EBOB) (46 Ci/mmol), illustrating the use of AMS for characterizing the binding sites of high-affinity (14)C radioligands. Fourteen noncompetitive antagonists of widely diverse chemotypes assayed at 1 or 10 µM inhibited [(14)C]TETS and [(3)H]EBOB binding to a similar extent (r(2) = 0.71). Molecular dynamics simulations of these 14 toxicants in the pore region of the α1ß2γ2 GABAAR predict unique and significant polar interactions for TETS with α1T1' and γ2S2', which are not observed for EBOB or the GABAergic insecticides. Several GABAAR modulators similarly inhibited [(14)C]TETS and [(3)H]EBOB binding, including midazolam, flurazepam, avermectin Ba1, baclofen, isoguvacine, and propofol, at 1 or 10 µM, providing an in vitro system for recognizing candidate antidotes.


Assuntos
Hidrocarbonetos Aromáticos com Pontes/metabolismo , Antagonistas de Receptores de GABA-A/metabolismo , Receptores de GABA-A/metabolismo , Amidas/química , Animais , Ligação Competitiva/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Hidrocarbonetos Aromáticos com Pontes/síntese química , Hidrocarbonetos Aromáticos com Pontes/química , Isótopos de Carbono , Radioisótopos de Carbono , Formaldeído/química , Agonistas GABAérgicos/farmacologia , Antagonistas de Receptores de GABA-A/química , Compostos Heterocíclicos/química , Humanos , Hipnóticos e Sedativos/farmacologia , Inseticidas/química , Inseticidas/metabolismo , Ácidos Isonicotínicos/farmacologia , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Propofol/farmacologia , Piridoxina/farmacologia , Ensaio Radioligante , Ratos , Enxofre/química , Complexo Vitamínico B/farmacologia
9.
Biochemistry ; 55(23): 3303-14, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27158738

RESUMO

Lipid II is critical for peptidoglycan synthesis, which is the main component of the bacterial cell wall. Lipid II is a relatively conserved and important part of the cell wall biosynthesis pathway and is targeted by antibiotics such as the lantibiotics, which achieve their function by disrupting the biosynthesis of the cell wall. Given the urgent need for development of novel antibiotics to counter the growing threat of bacterial infection resistance, it is imperative that a thorough molecular-level characterization of the molecules targeted by antibiotics be achieved. To this end, we present a molecular dynamics simulation study of the conformational dynamics of Lipid II within a detailed model of the Staphylococcus aureus cell membrane. We show that Lipid II is able to adopt a range of conformations, even within the packed lipidic environment of the membrane. Our simulations also reveal dimerization of Lipid II mediated by cations. In the presence of the defensin peptide plectasin, the conformational lability of Lipid II allows it to form loose complexes with the protein, via a number of different binding modes.


Assuntos
Membrana Celular/metabolismo , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Uridina Difosfato Ácido N-Acetilmurâmico/análogos & derivados , Sítios de Ligação , Modelos Moleculares , Peptídeos/química , Conformação Proteica , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Uridina Difosfato Ácido N-Acetilmurâmico/química , Uridina Difosfato Ácido N-Acetilmurâmico/metabolismo
10.
Biophys J ; 107(3): 630-641, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25099802

RESUMO

The blood-brain barrier (BBB) is formed by specialized tight junctions between endothelial cells that line brain capillaries to create a highly selective barrier between the brain and the rest of the body. A major problem to overcome in drug design is the ability of the compound in question to cross the BBB. Neuroactive drugs are required to cross the BBB to function. Conversely, drugs that target other parts of the body ideally should not cross the BBB to avoid possible psychotropic side effects. Thus, the task of predicting the BBB permeability of new compounds is of great importance. Two gold-standard experimental measures of BBB permeability are logBB (the concentration of drug in the brain divided by concentration in the blood) and logPS (permeability surface-area product). Both methods are time-consuming and expensive, and although logPS is considered the more informative measure, it is lower throughput and more resource intensive. With continual increases in computer power and improvements in molecular simulations, in silico methods may provide viable alternatives. Computational predictions of these two parameters for a sample of 12 small molecule compounds were performed. The potential of mean force for each compound through a 1,2-dioleoyl-sn-glycero-3-phosphocholine bilayer is determined by molecular dynamics simulations. This system setup is often used as a simple BBB mimetic. Additionally, one-dimensional position-dependent diffusion coefficients are calculated from the molecular dynamics trajectories. The diffusion coefficient is combined with the free energy landscape to calculate the effective permeability (Peff) for each sample compound. The relative values of these permeabilities are compared to experimentally determined logBB and logPS values. Our computational predictions correlate remarkably well with both logBB (R(2) = 0.94) and logPS (R(2) = 0.90). Thus, we have demonstrated that this approach may have the potential to provide reliable, quantitatively predictive BBB permeability, using a relatively quick, inexpensive method.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade Capilar , Modelos Biológicos , Simulação de Dinâmica Molecular , Preparações Farmacêuticas/sangue
11.
J Biol Chem ; 288(12): 8702-8711, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-23382389

RESUMO

The arenavirus nucleoprotein (NP) can suppress induction of type I interferon (IFN). This anti-IFN activity is thought to be shared by all arenaviruses with the exception of Tacaribe virus (TCRV). To identify the TCRV NP amino acid residues that prevent its IFN-countering ability, we created a series of NP chimeras between residues of TCRV NP and Pichinde virus (PICV) NP, an arenavirus NP with potent anti-IFN function. Chimera NP analysis revealed that a minimal four amino acid stretch derived from PICV NP could impart efficient anti-IFN activity to TCRV NP. Strikingly, the TCRV NP gene cloned and sequenced from viral stocks obtained through National Institutes of Health Biodefense and Emerging Infections (BEI) resources deviated from the reference sequence at this particular four-amino acid region, GPPT (GenBank KC329849) versus DLQL (GenBank NC004293), respectively at residues 389-392. When efficiently expressed in cells through codon-optimization, TCRV NP containing the GPPT residues rescued the antagonistic IFN function. Consistent with cell expression results, TCRV infection did not stimulate an IFNß response early in infection in multiple cells types (e.g. A549, P388D1), and IRF-3 was not translocated to the nucleus in TCRV-infected A549 cells. Collectively, these data suggest that certain TCRV strain variants contain the important NP amino acids necessary for anti-IFN activity.


Assuntos
Arenavirus do Novo Mundo/fisiologia , Interferon beta/metabolismo , Nucleoproteínas/química , Proteínas Recombinantes de Fusão/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arenavirus do Novo Mundo/imunologia , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Fator Regulador 3 de Interferon/metabolismo , Interferon beta/genética , Camundongos , Dados de Sequência Molecular , Nucleoproteínas/biossíntese , Nucleoproteínas/imunologia , Regiões Promotoras Genéticas , Transporte Proteico , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/imunologia , Ativação Transcricional , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/imunologia
12.
Commun Biol ; 7(1): 242, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418613

RESUMO

The oncogene RAS, extensively studied for decades, presents persistent gaps in understanding, hindering the development of effective therapeutic strategies due to a lack of precise details on how RAS initiates MAPK signaling with RAF effector proteins at the plasma membrane. Recent advances in X-ray crystallography, cryo-EM, and super-resolution fluorescence microscopy offer structural and spatial insights, yet the molecular mechanisms involving protein-protein and protein-lipid interactions in RAS-mediated signaling require further characterization. This study utilizes single-molecule experimental techniques, nuclear magnetic resonance spectroscopy, and the computational Machine-Learned Modeling Infrastructure (MuMMI) to examine KRAS4b and RAF1 on a biologically relevant lipid bilayer. MuMMI captures long-timescale events while preserving detailed atomic descriptions, providing testable models for experimental validation. Both in vitro and computational studies reveal that RBDCRD binding alters KRAS lateral diffusion on the lipid bilayer, increasing cluster size and decreasing diffusion. RAS and membrane binding cause hydrophobic residues in the CRD region to penetrate the bilayer, stabilizing complexes through ß-strand elongation. These cooperative interactions among lipids, KRAS4b, and RAF1 are proposed as essential for forming nanoclusters, potentially a critical step in MAP kinase signal activation.


Assuntos
Bicamadas Lipídicas , Lipídeos de Membrana , Lipídeos de Membrana/metabolismo , Bicamadas Lipídicas/metabolismo , Membrana Celular/metabolismo , Membranas/metabolismo , Transdução de Sinais
13.
Chem Res Toxicol ; 26(10): 1444-54, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24028067

RESUMO

The type A GABA receptors (GABARs) are ligand-gated ion channels (LGICs) found in the brain and are the major inhibitory neurotransmitter receptors. Upon binding of an agonist, the GABAR opens and increases the intraneuronal concentration of chloride ions, thus hyperpolarizing the cell and inhibiting the transmission of the nerve action potential. GABARs also contain many other modulatory binding pockets that differ from the agonist-binding site. The composition of the GABAR subunits can alter the properties of these modulatory sites. Picrotoxin is a noncompetitive antagonist for LGICs, and by inhibiting GABAR, picrotoxin can cause overstimulation and induce convulsions. We use addition of picrotoxin to probe the characteristics and possible mechanism of an additional modulatory pocket located at the interface between the ligand-binding domain and the transmembrane domain of the GABAR. Picrotoxin is widely regarded as a pore-blocking agent that acts at the cytoplasmic end of the channel. However, there are also data to suggest that there may be an additional, secondary binding site for picrotoxin. Through homology modeling, molecular docking, and molecular dynamics simulations, we show that binding of picrotoxin to this interface pocket correlates with these data, and negative modulation occurs at the pocket via a kinking of the pore-lining helices into a more closed orientation.


Assuntos
Picrotoxina/metabolismo , Receptores de GABA-A/metabolismo , Regulação Alostérica , Sítios de Ligação , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Simulação de Acoplamento Molecular , Picrotoxina/química , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de GABA-A/química
14.
Membranes (Basel) ; 13(11)2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37999336

RESUMO

Passive permeation of cellular membranes is a key feature of many therapeutics. The relevance of passive permeability spans all biological systems as they all employ biomembranes for compartmentalization. A variety of computational techniques are currently utilized and under active development to facilitate the characterization of passive permeability. These methods include lipophilicity relations, molecular dynamics simulations, and machine learning, which vary in accuracy, complexity, and computational cost. This review briefly introduces the underlying theories, such as the prominent inhomogeneous solubility diffusion model, and covers a number of recent applications. Various machine-learning applications, which have demonstrated good potential for high-volume, data-driven permeability predictions, are also discussed. Due to the confluence of novel computational methods and next-generation exascale computers, we anticipate an exciting future for computationally driven permeability predictions.

15.
Curr Opin Struct Biol ; 80: 102569, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36966691

RESUMO

Multiscale modeling has a long history of use in structural biology, as computational biologists strive to overcome the time- and length-scale limits of atomistic molecular dynamics. Contemporary machine learning techniques, such as deep learning, have promoted advances in virtually every field of science and engineering and are revitalizing the traditional notions of multiscale modeling. Deep learning has found success in various approaches for distilling information from fine-scale models, such as building surrogate models and guiding the development of coarse-grained potentials. However, perhaps its most powerful use in multiscale modeling is in defining latent spaces that enable efficient exploration of conformational space. This confluence of machine learning and multiscale simulation with modern high-performance computing promises a new era of discovery and innovation in structural biology.


Assuntos
Simulação de Dinâmica Molecular , Conformação Molecular
16.
J Chem Theory Comput ; 19(20): 7387-7404, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37796943

RESUMO

Cholesterol plays a crucial role in biomembranes by regulating various properties, such as fluidity, rigidity, permeability, and organization of lipid bilayers. The latest version of the Martini model, Martini 3, offers significant improvements in interaction balance, molecular packing, and inclusion of new bead types and sizes. However, the release of the new model resulted in the need to reparameterize many core molecules, including cholesterol. Here, we describe the development and validation of a Martini 3 cholesterol model, addressing issues related to its bonded setup, shape, volume, and hydrophobicity. The proposed model mitigates some limitations of its Martini 2 predecessor while maintaining or improving the overall behavior.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Interações Hidrofóbicas e Hidrofílicas , Colesterol
17.
J Chem Theory Comput ; 19(9): 2658-2675, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37075065

RESUMO

Interdependence across time and length scales is common in biology, where atomic interactions can impact larger-scale phenomenon. Such dependence is especially true for a well-known cancer signaling pathway, where the membrane-bound RAS protein binds an effector protein called RAF. To capture the driving forces that bring RAS and RAF (represented as two domains, RBD and CRD) together on the plasma membrane, simulations with the ability to calculate atomic detail while having long time and large length- scales are needed. The Multiscale Machine-Learned Modeling Infrastructure (MuMMI) is able to resolve RAS/RAF protein-membrane interactions that identify specific lipid-protein fingerprints that enhance protein orientations viable for effector binding. MuMMI is a fully automated, ensemble-based multiscale approach connecting three resolution scales: (1) the coarsest scale is a continuum model able to simulate milliseconds of time for a 1 µm2 membrane, (2) the middle scale is a coarse-grained (CG) Martini bead model to explore protein-lipid interactions, and (3) the finest scale is an all-atom (AA) model capturing specific interactions between lipids and proteins. MuMMI dynamically couples adjacent scales in a pairwise manner using machine learning (ML). The dynamic coupling allows for better sampling of the refined scale from the adjacent coarse scale (forward) and on-the-fly feedback to improve the fidelity of the coarser scale from the adjacent refined scale (backward). MuMMI operates efficiently at any scale, from a few compute nodes to the largest supercomputers in the world, and is generalizable to simulate different systems. As computing resources continue to increase and multiscale methods continue to advance, fully automated multiscale simulations (like MuMMI) will be commonly used to address complex science questions.


Assuntos
Proteínas de Membrana , Simulação de Dinâmica Molecular , Proteínas de Membrana/química , Membrana Celular/metabolismo , Aprendizado de Máquina , Lipídeos
18.
Membranes (Basel) ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448362

RESUMO

Proteins embedded in biological membranes perform essential functions in all organisms, serving as receptors, transporters, channels, cell adhesion molecules, and other supporting cellular roles. These membrane proteins comprise ~30% of all human proteins and are the targets of ~60% of FDA-approved drugs, yet their extensive characterization using established biochemical and biophysical methods has continued to be elusive due to challenges associated with the purification of these insoluble proteins. In response, the development of nanodisc techniques, such as nanolipoprotein particles (NLPs) and styrene maleic acid polymers (SMALPs), allowed membrane proteins to be expressed and isolated in solution as part of lipid bilayer rafts with defined, consistent nanometer sizes and compositions, thus enabling solution-based measurements. Fluorescence correlation spectroscopy (FCS) is a relatively simple yet powerful optical microscopy-based technique that yields quantitative biophysical information, such as diffusion kinetics and concentrations, about individual or interacting species in solution. Here, we first summarize current nanodisc techniques and FCS fundamentals. We then provide a focused review of studies that employed FCS in combination with nanodisc technology to investigate a handful of membrane proteins, including bacteriorhodopsin, bacterial division protein ZipA, bacterial membrane insertases SecYEG and YidC, Yersinia pestis type III secretion protein YopB, yeast cell wall stress sensor Wsc1, epidermal growth factor receptor (EGFR), ABC transporters, and several G protein-coupled receptors (GPCRs).

19.
J Chem Theory Comput ; 18(8): 5025-5045, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35866871

RESUMO

The appeal of multiscale modeling approaches is predicated on the promise of combinatorial synergy. However, this promise can only be realized when distinct scales are combined with reciprocal consistency. Here, we consider multiscale molecular dynamics (MD) simulations that combine the accuracy and macromolecular flexibility accessible to fixed-charge all-atom (AA) representations with the sampling speed accessible to reductive, coarse-grained (CG) representations. AA-to-CG conversions are relatively straightforward because deterministic routines with unique outcomes are achievable. Conversely, CG-to-AA conversions have many solutions due to a surge in the number of degrees of freedom. While automated tools for biomolecular CG-to-AA transformation exist, we find that one popular option, called Backward, is prone to stochastic failure and the AA models that it does generate frequently have compromised protein structure and incorrect stereochemistry. Although these shortcomings can likely be circumvented by human intervention in isolated instances, automated multiscale coupling requires reliable and robust scale conversion. Here, we detail an extension to Multiscale Machine-learned Modeling Infrastructure (MuMMI), including an improved CG-to-AA conversion tool called sinceCG. This tool is reliable (∼98% weakly correlated repeat success rate), automatable (no unrecoverable hangs), and yields AA models that generally preserve protein secondary structure and maintain correct stereochemistry. We describe how the MuMMI framework identifies CG system configurations of interest, converts them to AA representations, and simulates them at the AA scale while on-the-fly analyses provide feedback to update CG parameters. Application to systems containing the peripheral membrane protein RAS and proximal components of RAF kinase on complex eight-component lipid bilayers with ∼1.5 million atoms is discussed in the context of MuMMI.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Humanos , Bicamadas Lipídicas/química , Estrutura Secundária de Proteína , Proteínas/química
20.
J Mol Model ; 27(6): 162, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33969428

RESUMO

N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels found in the nerve cell membranes. As a result of overexcitation of NMDARs, neuronal death occurs and may lead to diseases such as epilepsy, stroke, Alzheimer's disease, and Parkinson's disease. In this study, human GluN1- GluN2A type NMDAR structure is modeled based on the X-ray structure of the Xenopus laevis template and missing loops are added by ab-initio loop modeling. The final structure is chosen according to two different model assessment scores. To be able to observe the structural changes upon ligand binding, glycine and glutamate molecules are docked into the corresponding binding sites of the receptor. Subsequently, molecular dynamics simulations of 1.3 µs are performed for both apo and ligand-bound structures. Structural parameters, which have been considered to show functionally important changes in previous NMDAR studies, are monitored as conformational rulers to understand the dynamics of the conformational changes. Moreover, principal component analysis (PCA) is performed for the equilibrated part of the simulations. From these analyses, the differences in between apo and ligand-bound simulations can be summarized as the following: The girdle right at the beginning of the pore loop, which connects M2 and M3 helices of the ion channel, partially opens. Ligands act like an adhesive for the ligand-binding domain (LBD) by keeping the bi-lobed structure together and consequently this is reflected to the overall dynamics of the protein as an increased correlation of the LBD with especially the amino-terminal domain (ATD) of the protein.


Assuntos
Bases de Dados de Proteínas , Simulação de Dinâmica Molecular , N-Metilaspartato/química , Proteínas do Tecido Nervoso/química , Receptores de N-Metil-D-Aspartato/química , Animais , Humanos , Ratos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA