Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 305(5): H732-9, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23792681

RESUMO

While it is intuitively clear that aortic anatomy and embolus size could be important determinants for cardiogenic embolic stroke risk and stroke location, few data exist confirming or characterizing this hypothesis. The objective of this study is to use medical imaging and computational modeling to better understand if aortic anatomy and embolus size influence predilections for cardiogenic embolic transport and right vs. left hemisphere propensity. Anatomically accurate models of the human aorta and branch arteries to the head were reconstructed from computed tomography (CT) angiography of 10 patients. Blood flow was modeled by the Navier-Stokes equations using a well-validated flow solver with physiologic inflow and boundary conditions. Embolic particulate was released from the aortic root and tracked through the common carotid and vertebral arteries for a range of particle sizes. Cardiogenic emboli reaching the carotid and vertebral arteries appeared to have a strong size-destination relationship that varied markedly from expectations based on blood distribution. Observed trends were robust to modeling parameters. A patient's aortic anatomy appeared to significantly influence the probability a cardiogenic particle becomes embolic to the head. Right hemisphere propensity appeared dominant for cardiogenic emboli, which has been confirmed clinically. The predilections discovered through this modeling could represent an important mechanism underlying cardiogenic embolic stroke etiology.


Assuntos
Aorta/patologia , Aortografia , Simulação por Computador , Embolia/diagnóstico por imagem , Embolia/patologia , Acidente Vascular Cerebral/epidemiologia , Aorta/fisiopatologia , Artérias Carótidas/fisiopatologia , Embolia/fisiopatologia , Humanos , Modelos Cardiovasculares , Fluxo Sanguíneo Regional/fisiologia , Fatores de Risco , Tomografia Computadorizada por Raios X , Artéria Vertebral/fisiopatologia
2.
Ann Biomed Eng ; 51(1): 34-44, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35902414

RESUMO

In response to the respiratory protection device shortage during the COVID-19 pandemic, the additive manufacturing (AM) community designed and disseminated numerous AM face masks. Questions regarding the effectiveness of AM masks arose because these masks were often designed with limited (if any) functional performance evaluation. In this study, we present a fit evaluation methodology in which AM face masks are virtually donned on a standard digital headform using finite element-based numerical simulations. We then extract contour plots to visualize the contact patches and gaps and quantify the leakage surface area for each mask frame. We also use the methodology to evaluate the effects of adding a foam gasket and variable face mask sizing, and finally propose a series of best practices. Herein, the methodology is focused only on characterizing the fit of AM mask frames and does not considering filter material or overall performance. We found that AM face masks may provide a sufficiently good fit if the sizing is appropriate and if a sealing gasket material is present to fill the gaps between the mask and face. Without these precautions, the rigid nature of AM materials combined with the wide variation in facial morphology likely results in large gaps and insufficient adaptability to varying user conditions which may render the AM face masks ineffective.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias/prevenção & controle , Máscaras
3.
Biomed Phys Eng Express ; 7(6)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34547744

RESUMO

The use of energy-based devices to treat genitourinary syndrome of menopause, termed vaginal thermotherapy (VTT), has gained significant interest in recent years. Among the primary safety concerns of this relatively new procedure is the possibility of unintentionally heating tissues adjacent to the vaginal wall, i.e., heating too deeply. Herein we use numerical simulations to evaluate monopolar radiofrequency-based (RF) VTT specifically focusing on the resultant depth of heating through a range of input parameters. Varying RF power, exposure time, and the simulated rate of blood perfusion, we map the parameter space identifying which combinations of input parameters are likely to heat past the depth of the vaginal wall and affect adjacent tissue. We found that the device parameters commonly used in the literature are likely to heat past the vaginal wall and merit further investigation. In addition, we found that the parameter typically used to describe VTT devices, total energy delivered, does not reliably indicate the resultant depth of heat dispersion.


Assuntos
Calefação , Hipertermia Induzida , Vagina , Feminino , Temperatura Alta , Humanos , Hipertermia Induzida/efeitos adversos , Ondas de Rádio/efeitos adversos
4.
PLoS One ; 16(1): e0244626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33439878

RESUMO

BACKGROUND: Face coverings constitute an important strategy for containing pandemics, such as COVID-19. Infection from airborne respiratory viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) can occur in at least three modes; tiny and/or dried aerosols (typically < 1.0 µm) generated through multiple mechanisms including talking, breathing, singing, large droplets (> 0.5 µm) generated during coughing and sneezing, and macro drops transmitted via fomites. While there is a growing number of studies looking at the performance of household materials against some of these situations, to date, there has not been any systematic characterization of household materials against all three modes. METHODS: A three-step methodology was developed and used to characterize the performance of 21 different household materials with various material compositions (e.g. cotton, polyester, polypropylene, cellulose and blends) using submicron sodium chloride aerosols, water droplets, and mucous mimicking macro droplets over an aerosol-droplet size range of ~ 20 nm to 0.6 cm. RESULTS: Except for one thousand-thread-count cotton, most single-layered materials had filtration efficiencies < 20% for sub-micron solid aerosols. However, several of these materials stopped > 80% of larger droplets, even at sneeze-velocities of up to 1700 cm/s. Three or four layers of the same material, or combination materials, would be required to stop macro droplets from permeating out or into the face covering. Such materials can also be boiled for reuse. CONCLUSION: Four layers of loosely knit or woven fabrics independent of the composition (e.g. cotton, polyester, nylon or blends) are likely to be effective source controls. One layer of tightly woven fabrics combined with multiple layers of loosely knit or woven fabrics in addition to being source controls can have sub-micron filtration efficiencies > 40% and may offer some protection to the wearer. However, the pressure drop across such fabrics can be high (> 100 Pa).


Assuntos
Face , Máscaras , Têxteis , Teste de Materiais , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA