Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(11): 6061-6067, 2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33511734

RESUMO

Persulfides (R-SSH) have been hypothesized as potent redox modulators and signaling compounds. Reported herein is the synthesis, characterization, and in vivo evaluation of a persulfide donor that releases N-acetyl cysteine persulfide (NAC-SSH) in response to the prokaryote-specific enzyme nitroreductase. The donor, termed NDP-NAC, decomposed in response to E. coli nitroreductase, resulting in release of NAC-SSH. NDP-NAC elicited gastroprotective effects in mice that were not observed in animals treated with control compounds incapable of persulfide release or in animals treated with Na2 S. NDP-NAC induced these effects by the upregulation of beneficial small- and medium-chain fatty acids and through increasing growth of Turicibacter sanguinis, a beneficial gut bacterium. It also decreased the populations of Synergistales bacteria, opportunistic pathogens implicated in gastrointestinal infections. This study reveals the possibility of maintaining gut health or treating microbiome-related diseases by the targeted delivery of reactive sulfur species.


Assuntos
Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Pró-Fármacos/farmacologia , Sulfetos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos , Escherichia coli/efeitos dos fármacos , Cinética , Listeria monocytogenes/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Pró-Fármacos/síntese química , Pró-Fármacos/química , Staphylococcus aureus/efeitos dos fármacos , Sulfetos/síntese química , Sulfetos/química
2.
J Am Chem Soc ; 142(47): 20058-20065, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33186019

RESUMO

Self-assembly of amphiphilic peptide-based building blocks gives rise to a plethora of interesting nanostructures such as ribbons, fibers, and tubes. However, it remains a great challenge to employ peptide self-assembly to directly produce nanostructures with lower symmetry than these highly symmetric motifs. We report here our discovery that persistent and regular crescent nanostructures with a diameter of 28 ± 3 nm formed from a series of tetrapeptides with the general structure AdKSKSEX (Ad = adamantyl group, KS = lysine residue functionalized with an S-aroylthiooxime (SATO) group, E = glutamic acid residue, and X = variable amino acid residue). In the presence of cysteine, the biological signaling gas hydrogen sulfide (H2S) was released from the SATO units of the crescent nanostructures, termed peptide-H2S donor conjugates (PHDCs), reducing levels of reactive oxygen species (ROS) in macrophage cells. Additional in vitro studies showed that the crescent nanostructures alleviated cytotoxicity induced by phorbol 12-myristate-13-acetate more effectively than common H2S donors and a PHDC of a similar chemical structure, AdKSKSE, that formed short nanoworms instead of nanocrescents. Cell internalization studies indicated that nanocrescent-forming PHDCs were more effective in reducing ROS levels in macrophages because they entered into and remained in cells better than nanoworms, highlighting how nanostructure morphology can affect bioactivity in drug delivery.


Assuntos
Nanoestruturas/química , Oligopeptídeos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Sulfeto de Hidrogênio/química , Sulfeto de Hidrogênio/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Oligopeptídeos/farmacologia , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Acetato de Tetradecanoilforbol/farmacologia
3.
Eur Polym J ; 1412020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33162563

RESUMO

Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.

4.
Angew Chem Int Ed Engl ; 57(21): 6324-6328, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29697170

RESUMO

Persulfides (RSSH) have been hypothesized as critical components in sulfur-mediated redox cycles and as potential signaling compounds, similar to hydrogen sulfide (H2 S). Hindering the study of persulfides is a lack of persulfide-donor compounds with selective triggers that release discrete persulfide species. Reported here is the synthesis and characterization of a ROS-responsive (ROS=reactive oxygen species), self-immolative persulfide donor. The donor, termed BDP-NAC, showed selectivity towards H2 O2 over other potential oxidative or nucleophilic triggers, resulting in the sustained release of the persulfide of N-acetyl cysteine (NAC) over the course of 2 h, as measured by LCMS. Exposure of H9C2 cardiomyocytes to H2 O2 revealed that BDP-NAC mitigated the effects of a highly oxidative environment in a dose-dependent manner over relevant controls and to a greater degree than common H2 S donors sodium sulfide (Na2 S) and GYY4137. BDP-NAC also rescued cells more effectively than a non-persulfide-releasing control compound in concert with common H2 S donors and thiols.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Sulfetos/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Estrutura Molecular , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oxirredução , Ratos , Espécies Reativas de Oxigênio/química , Sulfetos/química , Sulfetos/farmacologia
5.
Macromolecules ; 54(14): 6975-6981, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36910585

RESUMO

Polymeric micelles coexist in solution with unassembled chains (unimers). We have investigated the influence of glass transition temperature (T g) (i.e., chain mobility) of the micelle core-forming blocks on micelle-unimer coexistence. We synthesized a series of seven PEG-b-P(nBA-ran-tBA) amphiphilic block copolymers (PEG = poly(ethylene glycol), nBA = n-butyl acrylate, tBA = tert-butyl acrylate) with similar molecular weights (12 kg/mol). Varying the nBA/tBA molar ratio enabled broad modulation of core block T g with no significant change in core hydrophobicity or micelle size. NMR diffusometry revealed increasing unimer populations from 0% to 54% of total polymer concentration upon decreasing core block T g from 25 to -46 °C. Additionally, unimer population at fixed polymer composition (and thus core T g) increased with temperature. This study demonstrates the strong influence of core-forming block mobility on polymer self-assembly, providing information toward designing drug delivery systems and suggesting the need for new dynamical theory.

6.
Antioxid Redox Signal ; 32(2): 79-95, 2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31691577

RESUMO

Significance: Cell homeostasis and redox balance are regulated in part by hydrogen sulfide (H2S), a gaseous signaling molecule known as a gasotransmitter. Given its biological roles, H2S has promising therapeutic potential, but controlled delivery of this reactive and hazardous gas is challenging due to its promiscuity, rapid diffusivity, and toxicity at high doses. Macromolecular and supramolecular drug delivery systems are vital for the effective delivery of many active pharmaceutical ingredients, and H2S stands to benefit greatly from the tunable physical, chemical, and pharmacokinetic properties of polymeric and/or self-assembled drug delivery systems. Recent Advances: Several types of H2S-releasing macro- and supramolecular materials have been developed in the past 5 years, and the field is expanding quickly. Slow-releasing polymers, polymer assemblies, polymer nano- and microparticles, and self-assembled hydrogels have enabled triggered, sustained, and/or localized H2S delivery, and many of these materials are more potent in biological assays than analogous small-molecule H2S donors. Critical Issues: H2S plays a role in a number of (patho)physiological processes, including redox balance, ion channel regulation, modulation of inducible nitric oxide synthase, angiogenesis, blood pressure regulation, and more. Chemical tools designed to (i) deliver H2S to study these processes, and (ii) exploit H2S signaling pathways for treatment of diseases require control over the timing, rate, duration, and location of release. Future Directions: Development of new material approaches for H2S delivery that enable long-term, triggered, localized, and/or targeted delivery of the gas will enable greater understanding of this vital signaling molecule and eventually expedite its clinical application.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Sulfeto de Hidrogênio/farmacologia , Substâncias Macromoleculares/química , Animais , Homeostase , Humanos , Sulfeto de Hidrogênio/química , Estrutura Molecular , Transdução de Sinais , Tecnologia Farmacêutica/métodos
7.
ACS Macro Lett ; 9(4): 606-612, 2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33194315

RESUMO

Related biologically to the known gasotransmitter hydrogen sulfide (H2S), persulfides (R-SSH) have recently been recognized as native signaling compounds and redox regulators in their own right. Reported here is the synthesis, characterization, and in vitro evaluation of a small molecule persulfide donor and its polymeric counterpart, both of which release N-acetyl cysteine persulfide (NAC-SSH) in response to esterases. The donors, termed EDP-NAC and poly(EDP-NAC), underwent controlled decomposition in response to porcine liver esterase, resulting in pseudo-first-order release half-lives of 1.6 h ± 0.3 h and 36.0 h ± 0.6 h, respectively. In cell experiments, slow-releasing poly(EDP-NAC) rescued H9C2 cardiomyocytes more effectively than EDP-NAC when cells were treated with 5-fluorouricil (5-FU), which induces sustained production of ROS. Neither EDP-NAC nor poly(EDP-NAC) rescued MCF-7 breast cancer cells from 5-FU-induced oxidative stress, suggesting that polymeric persulfide donors could be used as adjuvants to reduce the deleterious cardiotoxic effects of many chemotherapeutics.

8.
Biochem Pharmacol ; 176: 113931, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32224139

RESUMO

Nitric oxide (NO) and hydrogen sulfide (H2S) are industrial toxins or pollutants; however, both are produced endogenously and have important biological roles in most mammalian tissues. The recognition that these gasotransmitters have a role in physiological and pathophysiological processes has presented opportunities to harness their intracellular effects either through inhibition of their production; or more commonly, through inducing their levels and or delivering them by various modalities. In this review article, we have focused on an array of NO and H2S donors, their hybrids with other established classes of drugs, and the various engineered delivery platforms such a fibers, polymers, nanoparticles, hydrogels, and others. In each case, we have reviewed the rationale for their development.


Assuntos
Gasotransmissores/metabolismo , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Cistationina beta-Sintase/metabolismo , Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Humanos , Óxido Nítrico Sintase/metabolismo
9.
Macromolecules ; 52(3): 1104-1111, 2019 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31354172

RESUMO

Drug delivery from polymer micelles has been widely studied, but methods to precisely tune rates of drug release from micelles are limited. Here, the mobility of hydrophobic micelle cores was varied to tune the rate at which a covalently bound drug was released. This concept was applied to cysteine-triggered release of hydrogen sulfide (H2S), a signaling gas with therapeutic potential. In this system, thiol-triggered H2S donor molecules were covalently linked to the hydrophobic blocks of self-assembled polymer amphiphiles. Because release of H2S is triggered by cysteine, diffusion of cysteine into the hydrophobic micelle core was hypothesized to control the rate of release. We confirmed this hypothesis by carrying out release experiments from H2S-releasing micelles in varying compositions of EtOH/H2O. Higher EtOH concentrations caused the micelles to swell, facilitating diffusion in and out of their hydrophobic cores and leading to faster H2S release from the micelles. To achieve a similar effect without addition of organic solvent, we prepared micelles with varying core mobility via incorporation of a plasticizing co-monomer in the core-forming block. The glass transition temperature (Tg) of the core block could therefore be precisely varied by changing the amount of the plasticizing co-monomer in the polymer. In aqueous solution under identical conditions, the release rate of H2S varied over 20-fold (t½ = 0.18 - 4.2 h), with the lowest Tg hydrophobic block resulting in the fastest H2S release. This method of modulating release kinetics from polymer micelles by tuning core mobility may be applicable to many types of physically encapsulated and covalently linked small molecules in a variety of drug delivery systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA