Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Cell ; 134(2): 231-43, 2008 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-18662539

RESUMO

DNA damage causes checkpoint activation leading to cell cycle arrest and repair, during which the chromatin structure is disrupted. The mechanisms whereby chromatin structure and cell cycle progression are restored after DNA repair are largely unknown. We show that chromatin reassembly following double-strand break (DSB) repair requires the histone chaperone Asf1 and that absence of Asf1 causes cell death, as cells are unable to recover from the DNA damage checkpoint. We find that Asf1 contributes toward chromatin assembly after DSB repair by promoting acetylation of free histone H3 on lysine 56 (K56) via the histone acetyl transferase Rtt109. Mimicking acetylation of K56 bypasses the requirement for Asf1 for chromatin reassembly and checkpoint recovery, whereas mutations that prevent K56 acetylation block chromatin reassembly after repair. These results indicate that restoration of the chromatin following DSB repair is driven by acetylated H3 K56 and that this is a signal for the completion of repair.


Assuntos
Montagem e Desmontagem da Cromatina , Reparo do DNA , DNA Fúngico/metabolismo , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Ciclo Celular/metabolismo , Imunoprecipitação da Cromatina , Quebras de DNA de Cadeia Dupla , Histona Acetiltransferases/metabolismo , Humanos , Lisina/metabolismo , Modelos Biológicos , Chaperonas Moleculares , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 49(1): 186-99, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23201123

RESUMO

Calorie restriction (CR) extends life span in diverse species. Mitochondria play a key role in CR adaptation; however, the molecular details remain elusive. We developed and applied a quantitative mass spectrometry method to probe the liver mitochondrial acetyl-proteome during CR versus control diet in mice that were wild-type or lacked the protein deacetylase SIRT3. Quantification of 3,285 acetylation sites-2,193 from mitochondrial proteins-rendered a comprehensive atlas of the acetyl-proteome and enabled global site-specific, relative acetyl occupancy measurements between all four experimental conditions. Bioinformatic and biochemical analyses provided additional support for the effects of specific acetylation on mitochondrial protein function. Our results (1) reveal widespread reprogramming of mitochondrial protein acetylation in response to CR and SIRT3, (2) identify three biochemically distinct classes of acetylation sites, and (3) provide evidence that SIRT3 is a prominent regulator in CR adaptation by coordinately deacetylating proteins involved in diverse pathways of metabolism and mitochondrial maintenance.


Assuntos
Restrição Calórica , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Sirtuína 3/fisiologia , Acetilcoenzima A/metabolismo , Acetilação , Adaptação Fisiológica , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/metabolismo , Animais , Metabolismo dos Carboidratos , Células Cultivadas , Cromatografia por Troca Iônica , Análise por Conglomerados , Sequência Consenso , Expressão Gênica , Genes Mitocondriais , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Processamento de Proteína Pós-Traducional , Proteoma/química , Proteoma/isolamento & purificação , Sirtuína 3/química , Sirtuína 3/isolamento & purificação , Sirtuína 3/metabolismo , Coloração e Rotulagem , Espectrometria de Massas em Tandem
3.
Mol Cell ; 39(5): 724-35, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20832724

RESUMO

Changes to the chromatin structure accompany aging, but the molecular mechanisms underlying aging and the accompanying changes to the chromatin are unclear. Here, we report a mechanism whereby altering chromatin structure regulates life span. We show that normal aging is accompanied by a profound loss of histone proteins from the genome. Indeed, yeast lacking the histone chaperone Asf1 or acetylation of histone H3 on lysine 56 are short lived, and this appears to be at least partly due to their having decreased histone levels. Conversely, increasing the histone supply by inactivation of the histone information regulator (Hir) complex or overexpression of histones dramatically extends life span via a pathway that is distinct from previously known pathways of life span extension. This study indicates that maintenance of the fundamental chromatin structure is critical for slowing down the aging process and reveals that increasing the histone supply extends life span.


Assuntos
Cromatina/metabolismo , Regulação Fúngica da Expressão Gênica/fisiologia , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cromatina/genética , Histonas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 288(36): 26209-26219, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23864654

RESUMO

Lysine acetylation is rapidly becoming established as a key post-translational modification for regulating mitochondrial metabolism. Nonetheless, distinguishing regulatory sites from among the thousands identified by mass spectrometry and elucidating how these modifications alter enzyme function remain primary challenges. Here, we performed multiplexed quantitative mass spectrometry to measure changes in the mouse liver mitochondrial acetylproteome in response to acute and chronic alterations in nutritional status, and integrated these data sets with our compendium of predicted Sirt3 targets. These analyses highlight a subset of mitochondrial proteins with dynamic acetylation sites, including acetyl-CoA acetyltransferase 1 (Acat1), an enzyme central to multiple metabolic pathways. We performed in vitro biochemistry and molecular modeling to demonstrate that acetylation of Acat1 decreases its activity by disrupting the binding of coenzyme A. Collectively, our data reveal an important new target of regulatory acetylation and provide a foundation for investigating the role of select mitochondrial protein acetylation sites in mediating acute and chronic metabolic transitions.


Assuntos
Acetil-CoA C-Acetiltransferase/metabolismo , Mitocôndrias Hepáticas/metabolismo , Proteoma/metabolismo , Sirtuína 3/metabolismo , Acetilcoenzima A/metabolismo , Acetilação , Animais , Camundongos , Camundongos Obesos
5.
Genetics ; 173(2): 599-610, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16582440

RESUMO

Transcriptional silencing involves the formation of specialized repressive chromatin structures. Previous studies have shown that the histone H3-H4 chaperone known as chromatin assembly factor 1 (CAF-1) contributes to transcriptional silencing in yeast, although the molecular basis for this was unknown. In this work we have identified mutations in the nonconserved C terminus of antisilencing function 1 (Asf1) that result in enhanced silencing of HMR and telomere-proximal reporters, overcoming the requirement for CAF-1 in transcriptional silencing. We show that CAF-1 mutants have a drastic reduction in DNA-bound histone H3 levels, resulting in reduced recruitment of Sir2 and Sir4 to the silent loci. C-terminal mutants of another histone H3-H4 chaperone Asf1 restore the H3 levels and Sir protein recruitment to the silent loci in CAF-1 mutants, probably as a consequence of the weakened interaction between these Asf1 mutants and histone H3. As such, these studies have identified the nature of the molecular defect in the silent chromatin structure that results from inactivation of the histone chaperone CAF-1.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Inativação Gênica , Genes Dominantes , Genes Fúngicos , Histonas/genética , Mutação , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Transcrição Gênica
6.
Cell Metab ; 21(3): 468-78, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25738461

RESUMO

Maximal exercise-associated oxidative capacity is strongly correlated with health and longevity in humans. Rats selectively bred for high running capacity (HCR) have improved metabolic health and are longer-lived than their low-capacity counterparts (LCR). Using metabolomic and proteomic profiling, we show that HCR efficiently oxidize fatty acids (FAs) and branched-chain amino acids (BCAAs), sparing glycogen and reducing accumulation of short- and medium-chain acylcarnitines. HCR mitochondria have reduced acetylation of mitochondrial proteins within oxidative pathways at rest, and there is rapid protein deacetylation with exercise, which is greater in HCR than LCR. Fluxomic analysis of valine degradation with exercise demonstrates a functional role of differential protein acetylation in HCR and LCR. Our data suggest that efficient FA and BCAA utilization contribute to high intrinsic exercise capacity and the health and longevity benefits associated with enhanced fitness.


Assuntos
Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Condicionamento Físico Animal/fisiologia , Acetilação , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Ácidos Graxos/metabolismo , Feminino , Masculino , Metabolômica/métodos , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/fisiologia , Oxirredução , Proteoma/metabolismo , Proteômica/métodos , Ratos , Corrida/fisiologia
7.
Cell Metab ; 16(5): 672-83, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23140645

RESUMO

Mitochondria are dynamic organelles that play a central role in a diverse array of metabolic processes. Elucidating mitochondrial adaptations to changing metabolic demands and the pathogenic alterations that underlie metabolic disorders represent principal challenges in cell biology. Here, we performed multiplexed quantitative mass spectrometry-based proteomics to chart the remodeling of the mouse liver mitochondrial proteome and phosphoproteome during both acute and chronic physiological transformations in more than 50 mice. Our analyses reveal that reversible phosphorylation is widespread in mitochondria, and is a key mechanism for regulating ketogenesis during the onset of obesity and type 2 diabetes. Specifically, we have demonstrated that phosphorylation of a conserved serine on Hmgcs2 (S456) significantly enhances its catalytic activity in response to increased ketogenic demand. Collectively, our work describes the plasticity of this organelle at high resolution and provides a framework for investigating the roles of proteome restructuring and reversible phosphorylation in mitochondrial adaptation.


Assuntos
Mitocôndrias Hepáticas/metabolismo , Proteoma/análise , Animais , Bases de Dados Factuais , Células HEK293 , Humanos , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/metabolismo , Camundongos , Camundongos Obesos , Fosfopeptídeos/análise , Fosforilação , Proteômica , Espectrometria de Massas em Tandem
8.
J Biol Chem ; 282(2): 1334-40, 2007 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-17107956

RESUMO

Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. We have found that budding yeast lacking Asf1 has greatly reduced levels of histone H3 acetylated at lysine 9. Lysine 9 is acetylated on newly synthesized budding yeast histone H3 prior to its assembly onto newly replicated DNA. Accordingly, we found that the vast majority of H3 Lys-9 acetylation peaked in S-phase, and this S-phase peak of H3 lysine 9 acetylation was absent in yeast lacking Asf1. By contrast, deletion of ASF1 has no effect on the S-phase specific peak of H4 lysine 12 acetylation; another modification carried by newly synthesized histones prior to chromatin assembly. We show that Gcn5 is the histone acetyltransferase responsible for the S-phase-specific peak of H3 lysine 9 acetylation. Strikingly, overexpression of Asf1 leads to greatly increased levels of H3 on acetylation on lysine 56 and Gcn5-dependent acetylation on lysine 9. Analysis of a panel of Asf1 mutations that modulate the ability of Asf1 to bind to histones H3/H4 demonstrates that the histone binding activity of Asf1 is required for the acetylation of Lys-9 and Lys-56 on newly synthesized H3. These results demonstrate that Asf1 does not affect the stability of the newly synthesized histones per se, but instead histone binding by Asf1 promotes the efficient acetylation of specific residues of newly synthesized histone H3.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Acetilação , Sítios de Ligação , Proteínas de Ciclo Celular/química , Histonas/química , Lisina/metabolismo , Chaperonas Moleculares/química , Estrutura Terciária de Proteína , Fase S/fisiologia , Proteínas de Saccharomyces cerevisiae/química
9.
Cell ; 127(3): 495-508, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-17081973

RESUMO

Anti-silencing function 1 (Asf1) is a highly conserved chaperone of histones H3/H4 that assembles or disassembles chromatin during transcription, replication, and repair. The structure of the globular domain of Asf1 bound to H3/H4 determined by X-ray crystallography to a resolution of 1.7 Angstroms shows how Asf1 binds the H3/H4 heterodimer, enveloping the C terminus of histone H3 and physically blocking formation of the H3/H4 heterotetramer. Unexpectedly, the C terminus of histone H4 that forms a mini-beta sheet with histone H2A in the nucleosome undergoes a major conformational change upon binding to Asf1 and adds a beta strand to the Asf1 beta sheet sandwich. Interactions with both H3 and H4 were required for Asf1 histone chaperone function in vivo and in vitro. The Asf1-H3/H4 structure suggests a "strand-capture" mechanism whereby the H4 tail acts as a lever to facilitate chromatin disassembly/assembly that may be used ubiquitously by histone chaperones.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Cristalografia por Raios X , Dimerização , Inativação Gênica , Histonas/química , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Nucleossomos/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
10.
Eukaryot Cell ; 4(9): 1583-90, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151251

RESUMO

Chromatin disassembly and reassembly, mediated by histone chaperones such as anti-silencing function 1 (Asf1), are likely to accompany all nuclear processes that occur on the DNA template. In order to gain insight into the functional conservation of Asf1 across eukaryotes, we have replaced the budding yeast Asf1 protein with Drosophila Asf1 (dAsf1) or either of the two human Asf1 (hAsf1a and hAsf1b) counterparts. We found that hAsf1b is best able to rescue the growth defect of Saccharomyces cerevisiae lacking Asf1. Moreover, dAsf1 and hAsf1b but not hAsf1a can replace the role of yeast Asf1 in protecting against replicational stress and activating the PHO5 gene, while only hAsf1a can replace the role of Asf1 in protecting against double-stranded-DNA-damaging agents. Furthermore, it appears that the interaction between Asf1 and the DNA damage checkpoint protein Rad53 is not required for Asf1's role in maintaining genomic integrity. In addition to indicating the functional conservation of the Asf1 proteins across species, these studies suggest distinct roles for the two human Asf1 proteins.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Inativação Gênica , Histonas/metabolismo , Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Fosfatase Ácida , Sequência de Aminoácidos , Animais , Bleomicina/farmacologia , Proteínas de Ciclo Celular/genética , Quinase do Ponto de Checagem 2 , Sequência Conservada , Dano ao DNA , Replicação do DNA/efeitos dos fármacos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Teste de Complementação Genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Imunoprecipitação , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA