Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nanotechnology ; 26(49): 494002, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26574237

RESUMO

The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH3NH3PbX3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs' patterning over substrates is resolved by using precise Nd:YVO4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH3NH3PbI3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices.

2.
Nanoscale ; 8(9): 5368-78, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26883743

RESUMO

We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm(2)) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm(2) active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA