Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 288(1954): 20211156, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34229495

RESUMO

Animals use varied acoustic signals that play critical roles in their lives. Understanding the function of these signals may inform about key life-history processes relevant for conservation. In the case of fin whales (Balaenoptera physalus), that produce different call types associated with different behaviours, several hypotheses have emerged regarding call function, but the topic still remains in its infancy. Here, we investigate the potential function of two fin whale vocalizations, the song-forming 20-Hz call and the 40-Hz call, by examining their production in relation to season, year and prey biomass. Our results showed that the production of 20-Hz calls was strongly influenced by season, with a clear peak during the breeding months, and secondarily by year, likely due to changes in whale abundance. These results support the reproductive function of the 20-Hz song used as an acoustic display. Conversely, season and year had no effect on variation in 40-Hz calling rates, but prey biomass did. This is the first study linking 40-Hz call activity to prey biomass, supporting the previously suggested food-associated function of this call. Understanding the functions of animal signals can help identifying functional habitats and predict the negative effects of human activities with important implications for conservation.


Assuntos
Baleia Comum , Acústica , Animais , Biomassa , Vocalização Animal , Baleias
2.
Elife ; 132024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38192202

RESUMO

Animal songs can change within and between populations as the result of different evolutionary processes. When these processes include cultural transmission, the social learning of information or behaviours from conspecifics, songs can undergo rapid evolutions because cultural novelties can emerge more frequently than genetic mutations. Understanding these song variations over large temporal and spatial scales can provide insights into the patterns, drivers and limits of song evolution that can ultimately inform on the species' capacity to adapt to rapidly changing acoustic environments. Here, we analysed changes in fin whale (Balaenoptera physalus) songs recorded over two decades across the central and eastern North Atlantic Ocean. We document a rapid replacement of song INIs (inter-note intervals) over just four singing seasons, that co-occurred with hybrid songs (with both INIs), and a clear geographic gradient in the occurrence of different song INIs during the transition period. We also found gradual changes in INIs and note frequencies over more than a decade with fin whales adopting song changes. These results provide evidence of vocal learning in fin whales and reveal patterns of song evolution that raise questions on the limits of song variation in this species.


Assuntos
Baleia Comum , Animais , Acústica , Oceano Atlântico , Mutação , Estações do Ano
3.
J Acoust Soc Am ; 133(2): 1126-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23363128

RESUMO

Geographic variation in the acoustic features of whistles emitted by the striped dolphin (Stenella coeruleoalba) from the Atlantic Ocean (Azores and Canary Islands) and the Mediterranean was investigated. Ten parameters (signal duration, beginning, end, minimum and maximum frequency, the number of inflection points, of steps, of minima and maxima in the contour and the frequency range) were extracted from each whistle. Discriminant function analysis correctly classified 73% of sounds between Atlantic Ocean and Mediterranean Sea. A cline in parameters was apparent from the Azores to the Mediterranean, with a major difference between the Canaries and the Mediterranean than between Azores and Canaries. Signal duration, maximum frequency, and frequency range measured in the Mediterranean sample were significantly lower compared to those measured in the Atlantic. Modulation parameters played a considerable role in area discrimination and were the only parameters contributing to highlight the differences within the Atlantic Ocean. Results suggest that the acoustic features constrained by structural phenotype, such as whistle's frequency parameters, have a major effect on the Atlantic and Mediterranean separation while behavioral context, social, and physical environment may be among the main factors contributing to local distinctiveness of Atlantic areas. These results have potential passive acoustic monitoring applications.


Assuntos
Acústica , Canto , Stenella/fisiologia , Acústica/instrumentação , Animais , Oceano Atlântico , Análise Discriminante , Mar Mediterrâneo , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores
4.
Mov Ecol ; 11(1): 33, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291674

RESUMO

BACKGROUND: High-resolution sound and movement recording tags offer unprecedented insights into the fine-scale foraging behaviour of cetaceans, especially echolocating odontocetes, enabling the estimation of a series of foraging metrics. However, these tags are expensive, making them inaccessible to most researchers. Time-Depth Recorders (TDRs), which have been widely used to study diving and foraging behaviour of marine mammals, offer a more affordable alternative. Unfortunately, data collected by TDRs are bi-dimensional (time and depth only), so quantifying foraging effort from those data is challenging. METHODS: A predictive model of the foraging effort of sperm whales (Physeter macrocephalus) was developed to identify prey capture attempts (PCAs) from time-depth data. Data from high-resolution acoustic and movement recording tags deployed on 12 sperm whales were downsampled to 1 Hz to match the typical TDR sampling resolution and used to predict the number of buzzes (i.e., rapid series of echolocation clicks indicative of PCAs). Generalized linear mixed models were built for dive segments of different durations (30, 60, 180 and 300 s) using multiple dive metrics as potential predictors of PCAs. RESULTS: Average depth, variance of depth and variance of vertical velocity were the best predictors of the number of buzzes. Sensitivity analysis showed that models with segments of 180 s had the best overall predictive performance, with a good area under the curve value (0.78 ± 0.05), high sensitivity (0.93 ± 0.06) and high specificity (0.64 ± 0.14). Models using 180 s segments had a small difference between observed and predicted number of buzzes per dive, with a median of 4 buzzes, representing a difference in predicted buzzes of 30%. CONCLUSIONS: These results demonstrate that it is possible to obtain a fine-scale, accurate index of sperm whale PCAs from time-depth data alone. This work helps leveraging the potential of time-depth data for studying the foraging ecology of sperm whales and the possibility of applying this approach to a wide range of echolocating cetaceans. The development of accurate foraging indices from low-cost, easily accessible TDR data would contribute to democratize this type of research, promote long-term studies of various species in several locations, and enable analyses of historical datasets to investigate changes in cetacean foraging activity.

5.
BMC Zool ; 6(1): 22, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37170140

RESUMO

BACKGROUND: Prioritizing groupings of organisms or 'units' below the species level is a critical issue for conservation purposes. Several techniques encompassing different time-frames, from genetics to ecological markers, have been considered to evaluate existing biological diversity at a sufficient temporal resolution to define conservation units. Given that acoustic signals are expressions of phenotypic diversity, their analysis may provide crucial information on current differentiation patterns within species. Here, we tested whether differences previously delineated within dolphin species based on i) geographic isolation, ii) genetics regardless isolation, and iii) habitat, regardless isolation and genetics, can be detected through acoustic monitoring. Recordings collected from 104 acoustic encounters of Stenella coeruleoalba, Delphinus delphis and Tursiops truncatus in the Azores, Canary Islands, the Alboran Sea and the Western Mediterranean basin between 1996 and 2012 were analyzed. The acoustic structure of communication signals was evaluated by analyzing parameters of whistles in relation to the known genetic and habitat-driven population structure. RESULTS: Recordings from the Atlantic and Mediterranean were accurately assigned to their respective basins of origin through Discriminant Function Analysis, with a minimum 83.8% and a maximum 93.8% classification rate. A parallel pattern between divergence in acoustic features and in the genetic and ecological traits within the basins was highlighted through Random Forest analysis. Although it is not yet possible to establish a causal link between each driver and acoustic differences between basins, we showed that signal variation reflects fine-scale diversity and may be used as a proxy for recognizing discrete units. CONCLUSION: We recommend that acoustic analysis be included in assessments of delphinid population structure, together with genetics and ecological tracer analysis. This cost-efficient non-invasive method can be applied to uncover distinctiveness and local adaptation in other wide-ranging marine species.

6.
Sci Rep ; 10(1): 3610, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107405

RESUMO

Several seamounts have been identified as hotspots of marine life in the Azores, acting as feeding stations for top predators, including cetaceans. Passive acoustic monitoring is an efficient tool to study temporal variations in the occurrence and behaviour of vocalizing cetacean species. We deployed bottom-moored Ecological Acoustic Recorders (EARs) to investigate the temporal patterns in acoustic presence and foraging activity of oceanic dolphins at two seamounts (Condor and Gigante) in the Azores. Data were collected in March-May 2008 and April 2010-February 2011. Dolphins were present year round and nearly every day at both seamounts. Foraging signals (buzzes and bray calls) were recorded in >87% of the days dolphin were present. There was a strong diel pattern in dolphin acoustic occurrence and behaviour, with higher detections of foraging and echolocation vocalizations during the night and of social signals during daylight hours. Acoustic data demonstrate that small dolphins consistently use Condor and Gigante seamounts to forage at night. These results suggest that these seamounts likely are important feeding areas for dolphins. This study contributes to a better understanding of the feeding ecology of oceanic dolphins and provides new insights into the role of seamount habitats for top predators.


Assuntos
Golfinhos/fisiologia , Ecolocação/fisiologia , Vocalização Animal/fisiologia , Acústica , Animais , Açores , Relógios Biológicos , Ecossistema , Comportamento Alimentar , Biologia Marinha
7.
Sci Rep ; 10(1): 6087, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32242074

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 10(1): 4766, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32179826

RESUMO

The identification of important areas during the annual life cycle of migratory animals, such as baleen whales, is vital for their conservation. In boreal springtime, fin and blue whales feed in the Azores on their way to northern latitudes while sei whales migrate through the archipelago with only occasional feeding. Little is known about their autumn or winter presence or their acoustic behaviour in temperate migratory habitats. This study used a 5-year acoustic data set collected by autonomous recorders in the Azores that were processed and analysed using an automated call detection and classification system. Fin and blue whales were acoustically present in the archipelago from autumn to spring with marked seasonal differences in the use of different call types. Diel patterns of calling activity were only found for fin whales with more calls during the day than night. Sei whales showed a bimodal distribution of acoustic presence in spring and autumn, corresponding to their expected migration patterns. Diel differences in sei whale calling varied with season and location. This work highlights the importance of the Azores as a migratory and wintering habitat for three species of baleen whales and provides novel information on their acoustic behaviour in a mid-Atlantic region.


Assuntos
Acústica , Migração Animal , Balaenoptera/fisiologia , Comportamento Animal , Baleia Comum/fisiologia , Vocalização Animal , Animais , Oceano Atlântico , Açores , Balaenoptera/psicologia , Ecossistema , Baleia Comum/psicologia , Estações do Ano
9.
Environ Pollut ; 236: 785-794, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29459333

RESUMO

The Atlantic spotted dolphin (Stenella frontalis) is an endemic species of the tropical-temperate Atlantic Ocean with widespread distribution. Although this species has been the subject of a large number of studies throughout its range, it remains in the "data deficient" category of the International Union for Conservation of Nature (IUCN). Chemical pollution by persistent organic pollutants (POPs) has been listed as one of the major threats to this species, however, there is no information on a wide scale. Thus, the aim of the present study was to investigate the contamination status of spotted dolphins on the metapopulation level as well as determine spatial and temporal variations in POP concentrations and bio-accumulation. A total of 115 blubber samples collected from a large part of the Atlantic basin were analysed for PCBs, DDTs, PBDEs, chlordanes, HCB and mirex. Although PCBs and DDTs were the predominant compounds in all areas, inter-location differences in POP concentrations were observed. Dolphins found at São Paulo, southeastern coast of Brazil, had the highest PCB concentrations (median: 10.5 µg/g lw) and Canary Islands dolphins had the highest DDT concentrations (median: 5.13 µg/g lw). Differences in PCB patterns among locations were also observed. Dolphins from the Azores and São Paulo demonstrated a similar pattern, with relatively highly contributions of tetra- (6.8 and 5.2%, respectively) and penta-CBs (25.6 and 23.8%, respectively) and lower contributions of hepta-CBs (20.8 and 23.5%, respectively) in comparison to other areas. Moreover, the sex of the animals and the year in which sampling or capture occurred exerted an important influence on the majority of the POPs analysed. Comparisons with toxicity thresholds available in the literature reveal that the São Paulo and Canary Island dolphins are the most vulnerable populations and should be considered in future conservation and management programs for the Atlantic spotted dolphin.


Assuntos
Monitoramento Ambiental , Stenella/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Oceano Atlântico , Açores , Brasil , Clordano/análise , Clordano/metabolismo , Golfinhos , Éteres Difenil Halogenados/análise , Éteres Difenil Halogenados/metabolismo , Bifenilos Policlorados/análise , Bifenilos Policlorados/metabolismo , Espanha , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA