Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Clin Genet ; 105(3): 335-339, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38041579

RESUMO

Facioscapulohumeral dystrophy (FSHD) is an autosomal dominant disease, although 10%-30% of cases are sporadic. However, this percentage may include truly de novo patients (carrying a reduced D4Z4 allele that is not present in either of the parents) and patients with apparently sporadic disease resulting from mosaicism, non-penetrance, or complex genetic situations in either patients or parents. In this study, we characterized the D4Z4 Reduced Alleles (DRA) and evaluated the frequency of truly de novo cases in FSHD1 in a cohort of DNA samples received consecutively for FSHD-diagnostic from 100 Italian families. The D4Z4 testing revealed that 60 families reported a DRA compatible with FSHD1 (1-10 RU). The DRA co-segregated with the disease in most cases. Five families with truly de novo cases were identified, suggesting that this condition may be slightly lower (8%) than previously reported. In addition, D4Z4 characterization in the investigated families showed 4% of mosaic cases and 2% with translocations. This study further highlighted the importance of performing family studies for clarifying apparently sporadic FSHD cases, with significant implications for genetic counseling, diagnosis, clinical management, and procreative choices for patients and families.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Alelos , Mosaicismo , Itália/epidemiologia , Cromossomos Humanos Par 4/genética
2.
Electrophoresis ; 44(19-20): 1588-1594, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37565369

RESUMO

The alteration of epigenetic modifications, including DNA methylation, can contribute to the etiopathogenesis and progression of many diseases. Among them, facioscapulohumeral dystrophy (FSHD) is a muscular disorder characterized by the loss of repressive epigenetic features affecting the D4Z4 locus (4q35). As a consequence, these alterations are responsible for DNA hypomethylation and a transcriptional-active chromatin conformation change that, in turn, lead to the aberrant expression of DUX4 in muscle cells. In the present study, methylation levels of 29 CpG sites of the DR1 region (within each repeat unit of the D4Z4 macrosatellite) were assessed on 335 subjects by employing primers designed for enhancing the performance of the assay. First, the DR1 original primers were optimized by adding M13 oligonucleotide tails. Moreover, the DR1 reverse primer was replaced with a degenerate one. As a result, the protocol optimization allowed a better sequencing resolution and a more accurate evaluation of DR1 methylation levels. Moreover, the assessment of the repeatability of measurements proved the reliability and robustness of the assay. The optimized protocol emerges as an excellent method to detect methylation levels compatible with FSHD.

3.
Int J Mol Sci ; 23(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269707

RESUMO

Precision medicine emphasizes fine-grained diagnostics, taking individual variability into account to enhance treatment effectiveness. Parkinson's disease (PD) heterogeneity among individuals proves the existence of disease subtypes, so subgrouping patients is vital for better understanding disease mechanisms and designing precise treatment. The purpose of this study was to identify PD subtypes using RNA-Seq data in a combined pipeline including unsupervised machine learning, bioinformatics, and network analysis. Two hundred and ten post mortem brain RNA-Seq samples from PD (n = 115) and normal controls (NCs, n = 95) were obtained with systematic data retrieval following PRISMA statements and a fully data-driven clustering pipeline was performed to identify PD subtypes. Bioinformatics and network analyses were performed to characterize the disease mechanisms of the identified PD subtypes and to identify target genes for drug repurposing. Two PD clusters were identified and 42 DEGs were found (p adjusted ≤ 0.01). PD clusters had significantly different gene network structures (p < 0.0001) and phenotype-specific disease mechanisms, highlighting the differential involvement of the Wnt/ß-catenin pathway regulating adult neurogenesis. NEUROD1 was identified as a key regulator of gene networks and ISX9 and PD98059 were identified as NEUROD1-interacting compounds with disease-modifying potential, reducing the effects of dopaminergic neurodegeneration. This hybrid data analysis approach could enable precision medicine applications by providing insights for the identification and characterization of pathological subtypes. This workflow has proven useful on PD brain RNA-Seq, but its application to other neurodegenerative diseases is encouraged.


Assuntos
Doença de Parkinson , Encéfalo/metabolismo , Redes Reguladoras de Genes , Humanos , Aprendizado de Máquina , Doença de Parkinson/metabolismo , RNA-Seq
4.
Hum Mol Genet ; 28(23): 3912-3920, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31600781

RESUMO

In this study, we investigated the sequence of (Structural Maintenance of Chromosomes flexible Hinge Domain containing 1) SMCHD1 gene in a cohort of clinically defined FSHD (facioscapulohumeral muscular dystrophy) patients in order to assess the distribution of SMCHD1 variants, considering the D4Z4 fragment size in terms of repeated units (RUs; short fragment: 1-7 RU, borderline: 8-10RU and normal fragment: >11RU). The analysis of SMCHD1 revealed the presence of 82 variants scattered throughout the introns, exons and 3'untranslated region (3'UTR) of the gene. Among them, 64 were classified as benign polymorphisms and 6 as VUS (variants of uncertain significance). Interestingly, seven pathogenic/likely pathogenic variants were identified in patients carrying a borderline or normal D4Z4 fragment size, namely c.182_183dupGT (p.Q62Vfs*48), c.2129dupC (p.A711Cfs*11), c.3469G>T (p.G1157*), c.5150_5151delAA (p.K1717Rfs*16) and c.1131+2_1131+5delTAAG, c.3010A>T (p.K1004*), c.853G>C (p.G285R). All of them were predicted to disrupt the structure and conformation of SMCHD1, resulting in the loss of GHKL-ATPase and SMC hinge essential domains. These results are consistent with the FSHD symptomatology and the Clinical Severity Score (CSS) of patients. In addition, five variants (c.*1376A>C, rs7238459; c.*1579G>A, rs559994; c.*1397A>G, rs150573037; c.*1631C>T, rs193227855; c.*1889G>C, rs149259359) were identified in the 3'UTR region of SMCHD1, suggesting a possible miRNA-dependent regulatory effect on FSHD-related pathways. The present study highlights the clinical utility of next-generation sequencing (NGS) platforms for the molecular diagnosis of FSHD and the importance of integrating molecular findings and clinical data in order to improve the accuracy of genotype-phenotype correlations.


Assuntos
Proteínas Cromossômicas não Histona/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Distrofia Muscular Facioescapuloumeral/genética , Mutação , Regiões 3' não Traduzidas , Adulto , Idoso , Proteínas Cromossômicas não Histona/química , Éxons , Feminino , Humanos , Íntrons , Itália , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Sequência de DNA
5.
J Cell Mol Med ; 24(23): 13554-13563, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33128843

RESUMO

Psoriasis and psoriatic arthritis are multifactorial chronic disorders whose etiopathogenesis essentially derives from the alteration of several signalling pathways and the co-occurrence of genetic, epigenetic and non-genetic susceptibility factors that altogether affect the functional and structural property of the skin. Although shared and differential susceptibility genes and molecular pathways are known to contribute to the onset of pathological phenotypes, further research is needed to dissect the molecular causes of psoriatic disease and its progression towards Psoriatic Arthritis. This review will therefore be addressed to explore differences and similarities in the etiopathogenesis and progression of both disorders, with a particular focus on genes involved in the maintenance of the skin structure and integrity (keratins and collagens), modulation of patterns of recognition (through Toll-like receptors and dectin-1) and immuno-inflammatory response (by NLRP3-dependent inflammasome) to microbial pathogens. In addition, special emphasis will be given to the contribution of epigenetic elements (methylation pattern, non-coding RNAs, chromatin modifiers and 3D genome organization) to the etiopathogenesis and progression of psoriasis and psoriatic arthritis. The evidence discussed in this review highlights how the knowledge of patients' clinical and (epi)genomic make-up could be helpful for improving the available therapeutic strategies for psoriasis and psoriatic arthritis treatment.


Assuntos
Artrite Psoriásica/diagnóstico , Artrite Psoriásica/etiologia , Suscetibilidade a Doenças , Fenótipo , Psoríase/diagnóstico , Psoríase/etiologia , Colágeno/genética , Colágeno/metabolismo , Epigênese Genética , Epigenômica/métodos , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Pele/metabolismo , Pele/patologia , Transcriptoma
6.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326527

RESUMO

Psoriasis (Ps) and Psoriatic Arthritis (PsA) are characterized by a multifactorial etiology, involving genetic and environmental factors. The present study aimed to investigate polymorphisms (SNPs) within genes involved in extracellular matrix and cell homeostasis and microRNA genes as susceptibility biomarkers for Ps and PsA. Bioinformatic analysis on public RNA-seq data allowed for selection of rs12488457 (A/C, COL6A5), rs13081855 (G/T, COL8A1), rs3812111 (A/T, COL10A1) and rs2910164 (C/G, MIR146A) as candidate biomarkers. These polymorphisms were analyzed by Real-Time PCR in a cohort of 1417 Italian patients (393 Ps, 424 PsA, 600 controls). Statistical and bioinformatic tools were utilized for assessing the genetic association and predicting the effects of the selected SNPs. rs12488457, rs13081855 and rs2910164 were significantly associated with both Ps (p = 1.39 × 10-8, p = 4.52 × 10-4, p = 0.04, respectively) and PsA (p = 5.12 × 10-5, p = 1.19 × 10-6, p = 0.01, respectively). rs3812111, instead, was associated only with PsA (p = 0.005). Bioinformatic analysis revealed common and differential biological pathways involved in Ps and PsA. COL6A5 and COL8A1 take part in the proliferation and angiogenic pathways which are altered in Ps/PsA and contribute to inflammation together with MIR146A. On the other hand, the exclusive association of COL10A1 with PsA highlighted the specific involvement of bone metabolism in PsA.


Assuntos
Colágeno Tipo VIII/metabolismo , Colágeno Tipo VI/metabolismo , Colágeno Tipo X/metabolismo , Predisposição Genética para Doença/genética , MicroRNAs/metabolismo , Psoríase/metabolismo , Adulto , Idoso , Artrite Psoriásica/genética , Artrite Psoriásica/metabolismo , Biomarcadores/sangue , Estudos de Coortes , Colágeno Tipo VI/genética , Colágeno Tipo VIII/genética , Colágeno Tipo X/genética , Bases de Dados Genéticas , Feminino , Genótipo , Humanos , Itália , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Psoríase/genética , RNA-Seq
7.
Neurogenetics ; 20(2): 57-64, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30911870

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a genetic neuromuscular disorder which mainly affects the muscles of the face, shoulder, and upper arms. FSHD is generally associated with the contraction of D4Z4 macrosatellite repeats on 4q35 chromosome or mutations in SMCHD1, which are responsible of the toxic expression of DUX4 in muscle tissue. Despite the recent application of NGS techniques in the clinical practice, the molecular diagnosis of FSHD is still performed with dated techniques such as Southern blotting. The diagnosis of FSHD requires therefore specific skills on both modern and less modern analytical protocols. Considering that clinical and molecular diagnosis of FSHD is challenging, it is not surprising that only few laboratories offer a comprehensive characterization of FSHD, which requires the education of professionals on traditional techniques even in the era of NGS. In conclusion, the study of FSHD provides an excellent example of using classical and modern molecular technologies which are equally necessary for the analysis of DNA repetitive traits associated with specific disorders.


Assuntos
Metilação de DNA , Músculos/metabolismo , Distrofia Muscular Facioescapuloumeral/diagnóstico , Distrofia Muscular Facioescapuloumeral/genética , Alelos , Proteínas Cromossômicas não Histona/genética , Cromossomos Humanos Par 4 , Aconselhamento Genético , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mutação , Fenótipo , Prognóstico , Sequências Repetitivas de Ácido Nucleico
8.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934838

RESUMO

The complex interplay among genetic, epigenetic, and environmental variables is the basis for the multifactorial origin of age-related macular degeneration (AMD). Previous results highlighted that single nucleotide polymorphisms (SNPs) of CFH, ARMS2, IL-8, TIMP3, SLC16A8, RAD51B, VEGFA, and COL8A1 were significantly associated with the risk of AMD in the Italian population. Given these data, this study aimed to investigate the impact of SNPs in genes coding for MIR146A, MIR31, MIR23A, MIR27A, MIR20A, and MIR150 on their susceptibility to AMD. Nine-hundred and seventy-six patients with exudative AMD and 1000 controls were subjected to an epigenotyping analysis through real-time PCR and direct sequencing. Biostatistical and bioinformatic analysis was performed to evaluate the association with susceptibility to AMD. These analyses reported that the SNPs rs11671784 (MIR27A, G/A) and rs2910164 (MIR146A, C/G) were significantly associated with AMD risk. Interestingly, the bioinformatic analysis showed that MIR27A and MIR146A take part in the angiogenic and inflammatory pathways underlying AMD etiopathogenesis. Thus, polymorphisms within the pre-miRNA sequences are likely to affect their functional activity, especially the interaction with specific targets. Therefore, our study represents a step forward in the comprehension of the mechanisms leading to AMD onset and progression, which certainly include the involvement of epigenetic modifications.


Assuntos
Predisposição Genética para Doença , Degeneração Macular/genética , MicroRNAs/genética , Idoso , Alelos , Feminino , Humanos , Masculino , MicroRNAs/química , MicroRNAs/metabolismo , Conformação de Ácido Nucleico , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco
9.
Prenat Diagn ; 38(13): 1096-1102, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30303263

RESUMO

OBJECTIVE: The Duchenne/Becker muscular dystrophy (DMD) carrier screening includes the evaluation of mutations in DMD gene, and the most widely used analysis is the multiplex ligation-dependent probe amplification (MLPA) for the DMD deletions/duplications detection. The high frequency of de novo mutations permits to estimate a risk up to 20% of mosaicisms for mothers of sporadic DMD children. The purpose of this study is to evaluate alternative analytical strategy for the detection of mosaics carrier women, in order to improve the recurrence risk estimation. METHOD: Different DNA and RNA analyses were conducted on samples from a woman that conceived a DMD fetus without previous family history of dystrophynopathy. RESULTS: Standard MLPA analysis failed to identify mosaicism, even if MLPA doses suggested it. Electrophoresis and direct sequencing conducted on RNA permitted to detect two different amplicons of cDNAs, demonstrating the presence of somatic mosaicism. Subsequent detection of a second affected fetus confirmed the mosaic status on the mother. CONCLUSION: The implementation of RNA analysis in diagnostic algorithm can increase the sensitivity of carrier test for mothers of sporadic affected patients, permitting detection of mosaic status. A revision of analytical guidelines is needed in order to improve the recurrence risk estimation and support prenatal genetic counseling.


Assuntos
DNA Complementar/análise , DNA/análise , Distrofina/genética , Triagem de Portadores Genéticos/métodos , Mosaicismo , Distrofia Muscular de Duchenne/genética , RNA/análise , Aborto Induzido , Adulto , Amostra da Vilosidade Coriônica , Eletroforese/métodos , Feminino , Humanos , Reação em Cadeia da Polimerase Multiplex , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA/métodos
10.
Hum Genomics ; 10: 9, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27044517

RESUMO

BACKGROUND: The knowledge of the individual genetic "status" in the prenatal era is particularly relevant in the case of positive family history for genetic diseases, in advanced maternal age and in the general screening for foetal abnormalities. In this context, here, we report an innovative molecular assay which utilizes the cell-free foetal DNA (cffDNA) as a source for the early and fast detection of the foetal sex. The study involved 132 pregnant women in their first 3 months of pregnancy, who agreed to give a blood sample. All the collected samples were immediately subjected to the separation of the plasma, which was utilized for the extraction of the cffDNA. Successively, the extracted cffDNA was analysed by a quantitative PCR (qPCR) method based on Plexor-HY chemistry, which is able to simultaneously identify, quantify and discriminate the autosomal DNA from the sex-linked DNA. RESULTS: Overall, the Plexor-HY assay demonstrated to be sensitive and specific for the determination of low-template DNA, such as the cffDNA. In fact, the Plexor-HY assay has been successfully performed in all the samples, identifying 70 males and 62 females. As the foetal sex can be provided in 120 min just by utilizing a maternal blood sample as cffDNA source, the assay represents a very fast, safe and non-invasive prenatal method. CONCLUSIONS: The possibility of determining the foetal sex in the early prenatal life consents the application of our assay as a helpful screening test for subjects and families at risk of sex-linked disorders. Moreover, the early knowledge of the foetal sex may be of great help even for the specialist, who might promptly advise the patients concerning the foetal risk of inheriting sex-linked disorders and the clinical utility of performing an invasive prenatal diagnosis.


Assuntos
DNA/genética , Diagnóstico Pré-Natal/métodos , Análise para Determinação do Sexo/métodos , Processos de Determinação Sexual , Adulto , Feminino , Feto , Genes sry/genética , Humanos , Masculino , Gravidez
11.
Electrophoresis ; 37(5-6): 860-4, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681637

RESUMO

The hypoacusia can be classified in two clinical forms: Syndromic (SHL) and Nonsyndromic (NSHL). In particular, the NSHL describes the 70-80% of hypoacusia cases and it is mainly due to genetic factors, which are causative of the deafness at the birth. The genetic hypoacusia presents different inheritance patterns: autosomal dominant (20%), autosomal recessive (80%), X-linked (1%), and mitochondrial (1%), respectively. To date, about 35 deafness-causative genes have been identified and most of them codify for connexin transmembrane proteins. Approximately 1:2500 children with NSHL carries mutations in the GJB2 and GJB6 (13q12) genes, which code for connexin 26 (Cx26) and connexin 30 (Cx30), respectively. In the Caucasian population, the most common mutations are 35delG, M34T and 167delT, and D13S1830. Given the frequency distribution of the four mutations in the Caucasian population and the pathogenic connection with NSHL, the development of accurate, rapid, and "low-cost" molecular assays should be strongly encouraged. To this purpose, we set up two different molecular assays (namely the Cx26 and Cx26-30 molecular assays) for the fast and inexpensive detection of 35delG, M34T, 167delT, and D13S1830 mutations. Both the molecular approaches showed to be accurate, sensitive, reproducible, and "low-cost" alternatives for the proper evaluation of the GJB2 and GJB6 genes, which are causative of NSHL. In conclusion, the Cx26 and Cx26-30 molecular assays can be applied to individual, preconception, prenatal, or postnatal screening for the causative-mutations of NSHL.


Assuntos
Conexinas/genética , Análise Mutacional de DNA/métodos , Eletroforese Capilar/métodos , Perda Auditiva/genética , Mutação/genética , Estudos de Coortes , Humanos
12.
New Microbiol ; 38(4): 491-7, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26485008

RESUMO

When treating HCV patients with conventional dual therapy in the current context of rapidly evolving HCV therapy, outcome prediction is crucial and HCV kinetics, as early as 48 hours after the start of treatment, may play a major role. We aimed at clarifying the role of HCV very early kinetics. We consecutively enrolled mono-infected HCV patients at 7 treatment sites in Central Italy and evaluated the predictive value of logarithmic decay of HCV RNA 48 hours after the start of dual therapy (Delta48). Among the 171 enrolled patients, 144 were evaluable for early and sustained virological response (EVR, SVR) prediction; 108 (75.0%) reached EVR and 84 (58.3%) reached SVR. Mean Delta 48 was 1.68 ± 1.22 log10 IU/ml, being higher in patients with SVR and EVR. Those genotype-1 patients experiencing a Delta 48 >2 logs showed a very high chance of success (100% positive predictive value), even in the absence of rapid virological response (RVR). Evaluation of very early HCV kinetics helped identify a small but significant proportion of genotype-1 patients (close to 10%) in addition to those identified with RVR, who could be treated with dual therapy in spite of not reaching RVR. In the current European context, whereby sustainability of HCV therapy is a crucial issue, conventional dual therapy may still play a reasonable role in patients with good tolerance and early prediction of success.


Assuntos
Antivirais/administração & dosagem , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Interferon-alfa/administração & dosagem , Ribavirina/administração & dosagem , Adulto , Estudos de Coortes , Quimioterapia Combinada , Feminino , Genótipo , Hepacivirus/classificação , Hepacivirus/isolamento & purificação , Hepatite C/genética , Hepatite C/virologia , Humanos , Interferons , Interleucinas/genética , Itália , Cinética , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento , Adulto Jovem
13.
Genes (Basel) ; 15(4)2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38674356

RESUMO

Artificial intelligence (AI) is rapidly transforming the field of medicine, announcing a new era of innovation and efficiency. Among AI programs designed for general use, ChatGPT holds a prominent position, using an innovative language model developed by OpenAI. Thanks to the use of deep learning techniques, ChatGPT stands out as an exceptionally viable tool, renowned for generating human-like responses to queries. Various medical specialties, including rheumatology, oncology, psychiatry, internal medicine, and ophthalmology, have been explored for ChatGPT integration, with pilot studies and trials revealing each field's potential benefits and challenges. However, the field of genetics and genetic counseling, as well as that of rare disorders, represents an area suitable for exploration, with its complex datasets and the need for personalized patient care. In this review, we synthesize the wide range of potential applications for ChatGPT in the medical field, highlighting its benefits and limitations. We pay special attention to rare and genetic disorders, aiming to shed light on the future roles of AI-driven chatbots in healthcare. Our goal is to pave the way for a healthcare system that is more knowledgeable, efficient, and centered around patient needs.


Assuntos
Inteligência Artificial , Doenças Raras , Humanos , Aprendizado Profundo , Medicina de Precisão/métodos , Medicina de Precisão/tendências , Doenças Raras/terapia
14.
Genes (Basel) ; 14(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36833238

RESUMO

In 1997, it was discovered that maternal plasma contains Cell-Free Fetal DNA (cffDNA). cffDNA has been investigated as a source of DNA for non-invasive prenatal testing for fetal pathologies, as well as for non-invasive paternity testing. While the advent of Next Generation Sequencing (NGS) led to the routine use of Non-Invasive Prenatal Screening (NIPT or NIPS), few data are available regarding the reliability and reproducibility of Non-Invasive Prenatal Paternity Testing (NIPPT or NIPAT). Here, we present a non-invasive prenatal paternity test (NIPAT) analyzing 861 Single Nucleotide Variants (SNV) from cffDNA through NGS technology. The test, validated on more than 900 meiosis samples, generated log(CPI)(Combined Paternity Index) values for designated fathers ranging from +34 to +85, whereas log(CPI) values calculated for unrelated individuals were below -150. This study suggests that NIPAT can be used with high accuracy in real cases.


Assuntos
Ácidos Nucleicos Livres , Paternidade , Gravidez , Feminino , Humanos , Reprodutibilidade dos Testes , Diagnóstico Pré-Natal , Feto , DNA/genética , Ácidos Nucleicos Livres/genética
15.
Diagnostics (Basel) ; 13(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36766497

RESUMO

BACKGROUND: Retinal dystrophies related to damaging variants in the cadherin-related family member 1 (CDHR1) gene are rare and phenotypically heterogeneous. Here, we report a longitudinal (three-year) structure-function evaluation of a patient with a CDHR1-related retinal dystrophy. METHODS: A 14-year-old girl was evaluated between 2019 and 2022. An ophthalmological assessment, including color vision, perimetry, electroretinography, and multimodal imaging of the retina, was performed periodically every six months. Next-generation sequencing disclosed two likely pathogenic/pathogenic variants in the CDHR1 gene, in compound heterozygosity, confirmed by segregation analysis. RESULTS: At first examination, the patient showed a cone-rod pattern retinal dystrophy. Over follow-up, there was a decline of visual acuity and perimetric sensitivity (by ≥0.3 and 0.6 log units, respectively). Visual loss was associated with a progressive increase in inner retinal thickness (by 30%). Outer retina showed no detectable changes over the follow-up. CONCLUSIONS: The results indicate that, in this patient with a CDHR1-related cone-rod dystrophy, the progression to severe visual loss was paralleled by a progressive inner retinal thickening, likely a reflection of remodeling. Inner retinal changes over time may be functionally relevant in view of the therapeutic attempts based on gene therapy or stem cells to mitigate photoreceptor loss.

16.
Genes (Basel) ; 14(8)2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37628710

RESUMO

Stargardt macular dystrophy is a genetic disorder, but in many cases, the causative gene remains unrevealed. Through a combined approach (whole-exome sequencing and phenotype/family-driven filtering algorithm) and a multilevel validation (international database searching, prediction scores calculation, splicing analysis assay, segregation analyses), a biallelic mutation in the RDH8 gene was identified to be responsible for Stargardt macular dystrophy in a consanguineous Italian family. This paper is a report on the first family in which a biallelic deleterious mutation in RDH8 is detected. The disease phenotype is consistent with the expected phenotype hypothesized in previous studies on murine models. The application of the combined approach to genetic data and the multilevel validation allowed the identification of a splicing mutation in a gene that has never been reported before in human disorders.


Assuntos
Algoritmos , Splicing de RNA , Humanos , Animais , Camundongos , Bioensaio , Bases de Dados Factuais , Doença de Stargardt/genética
17.
Case Rep Ophthalmol ; 14(1): 626-639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023612

RESUMO

Introduction: Doyne honeycomb retinal dystrophy (DHRD), or autosomal dominant radial drusen, is a genetic disease caused by pathogenic variants of the epidermal growth factor (EGF)-containing fibulin-like extracellular matrix protein 1 EFEMP1 gene and is characterized by the formation of subretinal drusenoid deposits. In a previous study, we reported the short-term beneficial effects of nanosecond laser treatment (2RT) on retinal function in DHRD. The aim of the present report was to describe the findings of a long-term follow-up of retinal structure/function in a small case series of patients with DHRD who underwent 2RT treatment. Case Presentation: Three DHRD patients (case 1, male and cases 2 and 3, two sister females, age range 41-46) with EFEMP1 pathogenic variant (c.1033C>T; p.R345W) and drusenoid deposits at the posterior pole were examined at baseline and after 2RT treatment, at regular intervals (every 2-4 months) up to 30 months. All 3 patients underwent one or two treatment sessions in one or both eyes during the follow-up period. Case 3 was treated with only the left eye (LE). Each patient underwent a full ophthalmologic examination, spectral domain optical coherence tomography (OCT), central perimetry with frequency doubling technology, and mesopic and photopic Ganzfeld electroretinograms. Compared to baseline findings, during follow-up, visual acuity improved in both eyes in case 1 and LE in case 2, while it decreased in the right eye in case 2 and LE in case 3; perimetric sensitivity was stable in case 1 and improved in both eyes in cases 2 and 3; and electroretinogram amplitude improved in cases 1 and 2 and was stable in case 3 (both eyes). OCT central macular thickness and retinal structure were stable in all cases. None of the patients had treatment-related side effects. Conclusion: This is the first report showing that in a long-term follow-up, 2RT treatment in DHRD may improve or stabilize some retinal function parameters without significant structural changes.

18.
Front Genet ; 14: 1235589, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37674478

RESUMO

Introduction: Despite the progress made in the study of Facioscapulohumeral Dystrophy (FSHD), the wide heterogeneity of disease complicates its diagnosis and the genotype-phenotype correlation among patients and within families. In this context, the present work employed Whole Exome Sequencing (WES) to investigate known and unknown genetic contributors that may be involved in FSHD and may represent potential disease modifiers, even in presence of a D4Z4 Reduced Allele (DRA). Methods: A cohort of 126 patients with clinical signs of FSHD were included in the study, which were characterized by D4Z4 sizing, methylation analysis and WES. Specific protocols were employed for D4Z4 sizing and methylation analysis, whereas the Illumina® Next-Seq 550 system was utilized for WES. The study included both patients with a DRA compatible with FSHD diagnosis and patients with longer D4Z4 alleles. In case of patients harboring relevant variants from WES, the molecular analysis was extended to the family members. Results: The WES data analysis highlighted 20 relevant variants, among which 14 were located in known genetic modifiers (SMCHD1, DNMT3B and LRIF1) and 6 in candidate genes (CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1). Most of them were found together with a permissive short (4-7 RU) or borderline/long DRA (8-20 RU), supporting the possibility that different genes can contribute to disease heterogeneity in presence of a FSHD permissive background. The segregation and methylation analysis among family members, together with clinical findings, provided a more comprehensive picture of patients. Discussion: Our results support FSHD pathomechanism being complex with a multigenic contribution by several known (SMCHD1, DNMT3B, LRIF1) and possibly other candidate genes (CTCF, DNMT1, DNMT3A, EZH2, SUV39H1) to disease penetrance and expressivity. Our results further emphasize the importance of extending the analysis of molecular findings within the proband's family, with the purpose of providing a broader framework for understanding single cases and allowing finer genotype-phenotype correlations in FSHD-affected families.

19.
Cells ; 11(17)2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-36078093

RESUMO

Despite the knowledge of the main mechanisms involved in facioscapulohumeral muscular dystrophy (FSHD), the high heterogeneity and variable penetrance of the disease complicate the diagnosis, characterization and genotype-phenotype correlation of patients and families, raising the need for further research and data. Thus, the present review provides an update of the main molecular aspects underlying the complex architecture of FSHD, including the genetic factors (related to D4Z4 repeated units and FSHD-associated genes), epigenetic elements (D4Z4 methylation status, non-coding RNAs and high-order chromatin interactions) and gene expression profiles (FSHD transcriptome signatures both at bulk tissue and single-cell level). In addition, the review will also describe the methods currently available for investigating the above-mentioned features and how the resulting data may be combined with artificial-intelligence-based pipelines, with the purpose of developing a multifunctional tool tailored to enhancing the knowledge of disease pathophysiology and progression and fostering the research for novel treatment strategies, as well as clinically useful biomarkers. In conclusion, the present review highlights how FSHD should be regarded as a disease characterized by a molecular spectrum of genetic and epigenetic factors, whose alteration plays a differential role in DUX4 repression and, subsequently, contributes to determining the FSHD phenotype.


Assuntos
Distrofia Muscular Facioescapuloumeral , Cromatina , Proteínas de Homeodomínio/metabolismo , Humanos , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Processamento de Proteína Pós-Traducional
20.
J Pers Med ; 12(7)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35887531

RESUMO

Given the multifactorial features characterizing age-related macular degeneration (AMD), the availability of a tool able to provide the individual risk profile is extremely helpful for personalizing the follow-up and treatment protocols of patients. To this purpose, we developed an open-source computational tool named WARE (Wet AMD Risk Evaluation), able to assess the individual risk profile for wet AMD based on genetic and non-genetic factors. In particular, the tool uses genetic risk measures normalized for their relative frequencies in the general population and disease prevalence. WARE is characterized by a user-friendly web page interface that is intended to assist clinicians in reporting risk assessment upon patient evaluation. When using the tool, plots of population risk distribution highlight a "low-risk zone" and a "high-risk zone" into which subjects can fall depending on their risk-assessment result. WARE represents a reliable population-specific computational system for wet AMD risk evaluation that can be exploited to promote preventive actions and personalized medicine approach for affected patients or at-risk individuals. This tool can be suitable to compute the disease risk adjusted to different populations considering their specific genetic factors and related frequencies, non-genetic factors, and the disease prevalence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA