Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 58(45): 4480-4493, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31633931

RESUMO

Histone deacetylase (HDAC) enzymes that catalyze removal of acetyl-lysine post-translational modifications are frequently post-translationally modified. HDAC8 is phosphorylated within the deacetylase domain at conserved residue serine 39, which leads to decreased catalytic activity. HDAC8 phosphorylation at S39 is unique in its location and function and may represent a novel mode of deacetylation regulation. To better understand the impact of phosphorylation of HDAC8 on enzyme structure and function, we performed crystallographic, kinetic, and molecular dynamics studies of the S39E HDAC8 phosphomimetic mutant. This mutation decreases the level of deacetylation of peptides derived from acetylated nuclear and cytoplasmic proteins. However, the magnitude of the effect depends on the peptide sequence and the identity of the active site metal ion [Zn(II) vs Fe(II)], with the value of kcat/KM for the mutant decreasing 9- to >200-fold compared to that of wild-type HDAC8. Furthermore, the dissociation rate constant of the active site metal ion increases by ∼10-fold. S39E HDAC8 was crystallized in complex with the inhibitor Droxinostat, revealing that phosphorylation of S39, as mimicked by the glutamate side chain, perturbs local structure through distortion of the L1 loop. Molecular dynamics simulations of both S39E and phosphorylated S39 HDAC8 demonstrate that the perturbation of the L1 loop likely occurs because of the lost hydrogen bond between D29 and S39. Furthermore, the S39 perturbation causes structural changes that propagate through the protein scaffolding to influence function in the active site. These data demonstrate that phosphorylation plays an important regulatory role for HDAC8 by affecting ligand binding, catalytic efficiency, and substrate selectivity.


Assuntos
Histona Desacetilases/química , Proteínas Repressoras/química , Cristalografia por Raios X , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Simulação de Dinâmica Molecular , Fosforilação , Mutação Puntual , Conformação Proteica , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade por Substrato
2.
J Biol Chem ; 292(52): 21568-21577, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29109148

RESUMO

Histone deacetylases (HDACs) catalyze deacetylation of acetyl-lysine residues within proteins. To date, HDAC substrate specificity and selectivity have been largely estimated using peptide substrates. However, it is unclear whether peptide substrates accurately reflect the substrate selectivity of HDAC8 toward full-length proteins. Here, we compare HDAC8 substrate selectivity in the context of peptides, full-length proteins, and protein-nucleic acid complexes. We demonstrate that HDAC8 catalyzes deacetylation of tetrameric histone (H3/H4) substrates with catalytic efficiencies that are 40-300-fold higher than those for corresponding peptide substrates. Thus, we conclude that additional contacts with protein substrates enhance catalytic efficiency. However, the catalytic efficiency decreases for larger multiprotein complexes. These differences in HDAC8 substrate selectivity for peptides and full-length proteins suggest that HDAC8 substrate preference is based on a combination of short- and long-range interactions. In summary, this work presents detailed kinetics for HDAC8-catalyzed deacetylation of singly-acetylated, full-length protein substrates, revealing that HDAC8 substrate selectivity is determined by multiple factors. These insights provide a foundation for understanding recognition of full-length proteins by HDACs.


Assuntos
Histona Desacetilases/metabolismo , Histonas/metabolismo , Proteínas Repressoras/metabolismo , Catálise , Cristalografia por Raios X/métodos , Histona Desacetilases/fisiologia , Histonas/fisiologia , Humanos , Cinética , Peptídeos/química , Proteínas Repressoras/fisiologia , Especificidade por Substrato/fisiologia
3.
Biochemistry ; 56(42): 5663-5670, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28937750

RESUMO

Histone deacetylase 8 (HDAC8) is a well-characterized member of the class I acetyl-lysine deacetylase (HDAC) family. Previous work has shown that the efficiency of HDAC8-catalyzed deacetylation of a methylcoumarin peptide varies depending on the identity of the divalent metal ion in the HDAC8 active site. Here we demonstrate that both HDAC8 activity and substrate selectivity for a diverse range of peptide substrates depend on the identity of the active site metal ion. Varied deacetylase activities of Fe(II)- and Zn(II)-HDAC8 toward an array of peptide substrates were identified using self-assembled monolayers for matrix-assisted laser desorption ionization (SAMDI) mass spectrometry. Subsequently, the metal dependence of deacetylation of peptides of biological interest was measured using an in vitro peptide assay. While Fe(II)-HDAC8 is generally more active than Zn(II)-HDAC8, the Fe(II)/Zn(II) HDAC8 activity ratio varies widely (from 2 to 150) among the peptides tested. These data provide support for the hypothesis that HDAC8 may undergo metal switching in vivo that, in turn, may regulate its activity. However, future studies are needed to explore the identity of the metal ion bound to HDAC8 in cells under varied conditions.


Assuntos
Histona Desacetilases/química , Ferro/química , Peptídeos/química , Proteínas Repressoras/química , Zinco/química , Acetilação , Catálise , Domínio Catalítico , Histona Desacetilases/metabolismo , Humanos , Ferro/metabolismo , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA