Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros

País de afiliação
Intervalo de ano de publicação
1.
Histochem Cell Biol ; 160(4): 321-339, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37306742

RESUMO

This study aimed to investigate the distal colon myenteric plexus and enteric glial cells (EGCs) in P2X7 receptor-deficient (P2X7-/-) animals after the induction of experimental ulcerative colitis. 2,4,6-Trinitrobenzene sulfonic acid (TNBS) was injected into the distal colon of C57BL/6 (WT) and P2X7 receptor gene-deficient (P2X7-/-, KO) animals. Distal colon tissues in the WT and KO groups were analyzed 24 h and 4 days after administration. The tissues were analyzed by double immunofluorescence of the P2X7 receptor with neuronal nitric oxide synthase (nNOS)-immunoreactive (ir), choline acetyltransferase (ChAT)-ir, and PGP9.5 (pan neuronal)-ir, and their morphology was assessed by histology. The quantitative analysis revealed 13.9% and 7.1% decreases in the number of P2X7 receptor-immunoreactive (ir) per ganglion in the 24 h-WT/colitis and 4 day-WT/colitis groups, respectively. No reduction in the number of nNOS-ir, choline ChAT-ir, and PGP9.5-ir neurons per ganglion was observed in the 4 day-KO/colitis group. In addition, a reduction of 19.3% in the number of GFAP (glial fibrillary acidic protein)-expressing cells per ganglion was found in the 24 h-WT/colitis group, and a 19% increase in the number of these cells was detected in the 4 day-WT/colitis group. No profile area changes in neurons were observed in the 24 h-WT and 24 h-KO groups. The 4 day-WT/colitis and 4 day-KO/colitis groups showed increases in the profile neuronal areas of nNOS, ChAT, and PGP9.5. The histological analysis showed hyperemia, edema, or cellular infiltration in the 24 h-WT/colitis and 4 day-WT/colitis groups. Edema was observed in the 4 day-KO/colitis group, which showed no histological changes compared with the 24 h-KO/colitis group. We concluded that ulcerative colitis differentially affected the neuronal classes in the WT and KO animals, demonstrating the potential participation and neuroprotective effect of the P2X7 receptor in enteric neurons in inflammatory bowel disease.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/metabolismo , Colite Ulcerativa/patologia , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Camundongos Endogâmicos C57BL , Plexo Mientérico/metabolismo , Neurônios/metabolismo , Colite/metabolismo , Colite/patologia
2.
Histochem Cell Biol ; 157(1): 65-81, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34626216

RESUMO

Inflammatory bowel diseases (IBDs) are chronic diseases of the gastrointestinal tract that include ulcerative colitis and Crohn's disease and affect enteric neurons. Research has shown that Brilliant Blue G (BBG), a P2X7 receptor antagonist, restores enteric neurons following ischemia and reperfusion. This study aimed to evaluate the effect of BBG on myenteric neurons of the distal colon in an experimental rat model of ulcerative colitis. Colitis was induced by injection of 2,4,6-trinitrobenzene sulfonic acid (TNBS) into the large intestine. BBG was administered 1 h after colitis induction and for five consecutive days thereafter. Distal colons were collected 24 h or 7 days after TNBS injection. The animals were divided into 24-h and 7-day sham (vehicle injection rather than colitis induction), 24-h colitis, 24-h BBG, 7-day colitis and 7-day BBG groups. The disease activity index (DAI), neuronal density and profile of neuronal nitric oxide synthase (nNOS)-, choline acetyltransferase (ChAT)- and P2X7 receptor-immunoreactive enteric neurons were analyzed, and histological analysis was performed. The results showed recovery of the DAI and histological tissue integrity in the BBG groups compared to those in the colitis groups. In addition, the numbers of neurons positive for nNOS, ChAT and the P2X7 receptor per area were decreased in the colitis groups, and these measures were recovered in the BBG groups. Neuronal size was increased in the colitis groups and restored in the BBG groups. In conclusion, BBG is effective in improving experimental ulcerative colitis, and the P2X7 receptor may be a therapeutic target.


Assuntos
Colite Ulcerativa , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , Neurônios/patologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Receptores Purinérgicos P2X7
3.
Dig Dis Sci ; 64(7): 1815-1829, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734238

RESUMO

INTRODUCTION: Our work analyzed the effects of a P2X7 receptor antagonist, Brilliant Blue G (BBG), on rat ileum myenteric plexus following ischemia and reperfusion (ISR) induced by 45 min of ileal artery occlusion with an atraumatic vascular clamp with 24 h (ISR 24-h group) or 14 d of reperfusion (ISR 14-d group). MATERIAL AND METHODS: Either BBG (50 mg/kg or 100 mg/kg, BBG50 or BBG100 groups) or saline (vehicle) was administered subcutaneously 1 h after ischemia in the ISR 24-h group or once daily for the 5 d after ischemia in the ISR 14-d group (n = 5 per group). We evaluated the neuronal density and profile area by examining the number of neutrophils in the intestinal layers, protein expression levels of the P2X7 receptor, intestinal motility and immunoreactivity for the P2X7 receptor, nitric oxide synthase, neurofilament-200, and choline acetyl transferase in myenteric neurons. RESULTS: The neuronal density and profile area were restored by BBG following ISR. The ischemic groups showed alterations in P2X7 receptor protein expression and the number of neutrophils in the intestine and decreased intestinal motility, all of which were recovered by BBG treatment. CONCLUSION: We concluded that ISR morphologically and functionally affected the intestine and that its effects were reversed by BBG treatment, suggesting the P2X7 receptor as a therapeutic target.


Assuntos
Íleo/inervação , Isquemia Mesentérica/tratamento farmacológico , Plexo Mientérico/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Corantes de Rosanilina/farmacologia , Animais , Citoproteção , Modelos Animais de Doenças , Motilidade Gastrointestinal/efeitos dos fármacos , Masculino , Isquemia Mesentérica/metabolismo , Isquemia Mesentérica/patologia , Isquemia Mesentérica/fisiopatologia , Plexo Mientérico/metabolismo , Plexo Mientérico/patologia , Neurônios/metabolismo , Neurônios/patologia , Infiltração de Neutrófilos/efeitos dos fármacos , Ratos Wistar , Receptores Purinérgicos P2X7/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
4.
Pflugers Arch ; 470(4): 623-632, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29372301

RESUMO

Hyperphosphatemia is a common condition in patients with chronic kidney disease (CKD) and can lead to bone disease, vascular calcification, and increased risks of cardiovascular disease and mortality. Inorganic phosphate (Pi) is absorbed in the intestine, an important step in the maintenance of homeostasis. In CKD, it is not clear to what extent Pi absorption is modulated by dietary Pi. Thus, we investigated 5/6 nephrectomized (Nx) Wistar rats to test whether acute variations in dietary Pi concentration over 2 days would alter hormones involved in Pi metabolism, expression of sodium-phosphate cotransporters, apoptosis, and the expression of matrix extracellular phosphoglycoprotein (MEPE) in different segments of the small intestine. The animals were divided into groups receiving different levels of dietary phosphate: low (Nx/LPi), normal (Nx/NPi), and high (Nx/HPi). Serum phosphate, fractional excretion of phosphate, intact serum fibroblast growth factor 23 (FGF-23), and parathyroid hormone (PTH) were significantly higher and ionized calcium was significantly lower in the Nx/HPi group than in the Nx/LPi group. The expression levels of NaPi-IIb and PiT-1/2 were increased in the total jejunum mucosa of the Nx/LPi group compared with the Nx/HPi group. Modification of Pi concentration in the diet affected the apoptosis of enterocytes, particularly with Pi overload. MEPE expression was higher in the Nx/HPi group than in the Nx/NPi. These data reveal the importance of early control of Pi in uremia to prevent an increase in serum PTH and FGF-23. Uremia may be a determining factor that explains the expressional modulation of the cotransporters in the small intestine segments.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Intestinos/fisiologia , Hormônio Paratireóideo/metabolismo , Fosfatos/metabolismo , Fósforo na Dieta/metabolismo , Proteínas Cotransportadoras de Sódio-Fosfato Tipo IIa/metabolismo , Animais , Fator de Crescimento de Fibroblastos 23 , Homeostase/fisiologia , Masculino , Ratos , Ratos Wistar , Insuficiência Renal Crônica/metabolismo , Uremia/metabolismo
5.
J Neuroinflammation ; 14(1): 79, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28388962

RESUMO

BACKGROUND: The irinotecan (CPT-11) causes intestinal mucositis and diarrhea that may be related to changes in the enteric nervous system (ENS). In inflammatory condition, mast cells release a variety of pro-inflammatory mediators that can interact with the ENS cells. It has not been explored whether CPT-11 is able to alter the enteric glial and neuronal cell, and the role of mast cells in this effect. Therefore, this study was conducted to investigate the effect of CPT-11 on the enteric glial and neuronal cells, as well as to study the role of mast cells in the CPT-11-induced intestinal mucositis. METHODS: Intestinal mucositis was induced in Swiss mice by the injection of CPT-11 (60 mg/kg, i.p.) once a day for 4 days following by euthanasia on the fifth day. To investigate the role of mast cells, the mice were pretreated with compound 48/80 for 4 days (first day, 0.6 mg/kg; second day, 1.0 mg/kg; third day, 1.2 mg/kg; fourth day, 2.4 mg/kg) to induce mast cell degranulation before the CPT-11 treatment. RESULTS: Here, we show that CPT-11 increased glial fibrillary acidic protein (GFAP) and S100ß gene and S100ß protein expressions and decreased HuC/D protein expression in the small intestine segments. Concomitantly, CPT-11 enhanced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels and inducible nitric oxide synthase (iNOS) gene expression, associated with an increase in the total number macrophages (positive cells for ionized calcium-binding adapter molecule, Iba-1) and degranulated mast cells in the small intestine segments and caused significant weight loss. The pretreatment with compound 48/80, an inductor of mast cells degranulation, significantly prevented these CPT-11-induced effects. CONCLUSIONS: Our data suggests the participation of mast cells on the CPT-11-induced intestinal mucositis, macrophages activation, enteric reactive gliosis, and neuron loss.


Assuntos
Camptotecina/análogos & derivados , Sistema Nervoso Entérico/metabolismo , Gliose/induzido quimicamente , Gliose/metabolismo , Mastócitos/metabolismo , Neurônios/metabolismo , Animais , Antineoplásicos Fitogênicos/toxicidade , Camptotecina/toxicidade , Contagem de Células , Sistema Nervoso Entérico/efeitos dos fármacos , Sistema Nervoso Entérico/patologia , Gliose/patologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Intestino Delgado/patologia , Irinotecano , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/patologia , Distribuição Aleatória
6.
Histochem Cell Biol ; 143(2): 171-84, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25201348

RESUMO

The digestive tracts of ulcerative colitis and Crohn's disease patients present with pathophysiological processes and intestinal necrosis. This study examined the P2X7 receptor and changes in the distal colon in enteric neurons of rats with experimental ulcerative colitis. The analysis was performed in the distal colons of rats with ulcerative colitis induced by the administration of 2,4,6-trinitrobenzene sulfonic acid (colitis group). The survival time after colitis induction was 24 h. The treated animals were compared to sham rats injected with phosphate-buffered saline and to animals with no intervention (control group). Tissues were prepared for immunohistochemical double-staining methods to examine P2X7 receptor, choline acetyltransferase (ChAT), calbindin, calretinin, anti-HuC/D (pan-neuronal) and S100ß (pan-glial). The colocalization of the P2X7 receptor-immunoreactive (IR) cells was observed in the myenteric plexus with nitric oxide synthase (NOS)-, ChAT-,calbindin-, calretinin- and HuC/D-IR neurons and S100ß-IR cells in the control, sham and colitis groups. The neuronal density (cell bodies/cm(2)) decreased in the myenteric plexus by 11, 18, 34, 22 and 60% in the P2X7 receptor, NOS-, ChAT-, calbindin- and calretinin-IR neurons, respectively. In addition, the densities (cell bodies/cm(2)) of HuC/D-IR neurons and S100ß-IR enteric glial cells decreased by 33 and 29%, respectively. The profile areas were reduced by 6.8 and 21% in NOS- and ChAT-IR neurons, respectively. There was also a 20% increase of calbindin-IR neurons. Morphological changes were observed, such as increased neutrophils, disintegration of the intestinal epithelium and goblet cells and decreased collagen. This study demonstrated that colitis differentially affects P2X7 receptor-expressing enteric neurons based on their chemical codes and may cause changes in morphology and motility.


Assuntos
Colite Ulcerativa/fisiopatologia , Sistema Nervoso Entérico/fisiopatologia , Regulação da Expressão Gênica , Receptores Purinérgicos P2X7/genética , Animais , Colo/anatomia & histologia , Modelos Animais de Doenças , Sistema Nervoso Entérico/metabolismo , Masculino , Ratos , Receptores Purinérgicos P2X7/metabolismo
7.
Dig Dis Sci ; 60(9): 2677-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25917048

RESUMO

BACKGROUND: We investigated the effects of ischemia followed by different periods of reperfusion (I/R) on immunoreactive S100ß-positive glial and Hu-immunoreactive neurons co-expressing the P2X2 receptor in the myenteric plexus of the rat ileum. METHODS: The ileal artery was occluded for 35 min with an atraumatic vascular clamp. The animals were killed 24 h, 72 h, and 1 week after ischemia. Sham animals were not submitted to ileal artery occlusion. The relative density, size, and co-localization of P2X2 receptor-expressing cells in relation to S100ß-immunoreactive glial and Hu-immunoreactive neuronal cells were evaluated. Additionally, we analyzed the effects of I/R on gastrointestinal transit and ileum contractile activity. RESULTS: The cellular density of P2X2 receptor and neuronal Hu immunoreactivity/cm(2) decreased after I/R, whereas glial S100ß immunoreactivity/cm(2) increased. No significant differences between sham and I/R groups were observed regarding the perikarya area of Hu-positive neurons. The area of S100ß-immunoreactive glial cells increased by 24.1 % 1 week after I/R compared with the 24 h group. Methylene blue progression along the small intestine decreased (P < 0.05) from 24.5 ± 2.3 % in the sham group to 17.2 ± 2.0 % 1 week post-ischemia. We noted a significant (P < 0.05) decrease in the maximal contraction amplitude triggered by electrical field stimulation in the presence of ATP in preparations submitted to 24 h of I/R. CONCLUSIONS: Changes in the P2X2 receptor density parallel myenteric neuronal loss following I/R of the rat ileum. This, together with the increase in the activated (oversized) glial cells, may contribute to decreased GI motility after I/R.


Assuntos
Íleo/irrigação sanguínea , Músculo Liso/fisiopatologia , Plexo Mientérico/metabolismo , Neuroglia/metabolismo , Receptores Purinérgicos P2X2/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Animais , Trânsito Gastrointestinal/fisiologia , Masculino , Contração Muscular , Plexo Mientérico/imunologia , Plexo Mientérico/patologia , Neuroglia/imunologia , Neuroglia/patologia , Neurônios/imunologia , Neurônios/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
8.
Cell Tissue Res ; 353(3): 367-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23644765

RESUMO

The colocalization, number, and size of various classes of enteric neurons immunoreactive (IR) for the purinergic P2X2 and P2X7 receptors (P2X2R, P2X7R) were analyzed in the myenteric and submucosal plexuses of control, undernourished, and re-fed rats. Pregnant rats were exposed to undernourishment (protein-deprivation) or fed a control diet, and their offspring comprised the following experimental groups: rats exposed to a normal diet throughout gestation until postnatal day (P)42, rats protein-deprived throughout gestation and until P42, and rats protein-deprived throughout gestation until P21 and then given a normal diet until P42. Immunohistochemistry was performed on the myenteric and submucosal plexuses to evaluate immunoreactivity for P2X2R, P2X7R, nitric oxide synthase (NOS), choline acetyltransferase (ChAT), calbindin, and calretinin. Double-immunohistochemistry of the myenteric and submucosal plexuses demonstrated that 100% of NOS-IR, calbindin-IR, calretinin-IR, and ChAT-IR neurons in all groups also expressed P2X2R and P2X7R. Neuronal density increased in the myenteric and submucosal plexuses of undernourished rats compared with controls. The average size (profile area) of some types of neurons in the myenteric and submucosal plexuses was smaller in the undernourished than in the control animals. These changes appeared to be reversible, as animals initially undernourished but then fed a normal diet at P21 (re-feeding) were similar to controls. Thus, P2X2R and P2X7R are present in NOS-positive inhibitory neurons, calbindin- and calretinin-positive intrinsic primary afferent neurons, cholinergic secretomotor neurons, and vasomotor neurons in rats. Alterations in these neurons during undernourishment are reversible following re-feeding.


Assuntos
Mesentério , Neurônios/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Deficiência de Proteína/metabolismo , Animais , Calbindina 2/metabolismo , Calbindinas/metabolismo , Colina O-Acetiltransferase/metabolismo , Feminino , Masculino , Mesentério/crescimento & desenvolvimento , Mesentério/inervação , Mesentério/metabolismo , Mesentério/patologia , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Óxido Nítrico Sintase/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Deficiência de Proteína/patologia , Ratos , Ratos Wistar , Receptores Purinérgicos P2X2/metabolismo , Receptores Purinérgicos P2X7/metabolismo
9.
Dig Dis Sci ; 58(12): 3429-39, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990036

RESUMO

BACKGROUND: Intestinal ischemia followed by reperfusion (I/R) may occur following intestinal obstruction. In rats, I/R in the small intestine leads to structural changes accompanied by neuronal death. AIM: To analyze the impact of I/R injury on different neuronal populations in the myenteric plexus of rat ileum. METHODS: The ileal artery was occluded for 35 min and animals were euthanized 6, 24, and 72 h, and 1 week later. Immunohistochemistry was performed with antibodies against the P2X7 receptor as well as nitric oxide synthase (NOS), calbindin, calretinin, choline acetyltransferase (ChAT), or the pan-neuronal marker anti-HuC/D. RESULTS: Double immunolabeling demonstrated that 100% of NOS-, calbindin-, calretinin-, and ChAT-immunoreactive neurons in all groups expressed the P2X7 receptor. Following I/R, neuronal density decreased by 22.6% in P2X7 receptor-immunoreactive neurons, and decreased by 46.7, 38, 39.8, 21.7, and 20% in NOS-, calbindin-, calretinin-, ChAT-, and HuC/D-immunoreactive neurons, respectively, at 6, 24, and 72 h and 1 week following injury compared to the control and sham groups. We also observed a 14% increase in the neuronal cell body profile area of the NOS-immunoreactive neurons at 6 and 24 h post-I/R and a 14% increase in ChAT-immunoreactive neurons at 1 week following I/R. However, the average size of the calretinin-immunoreactive neurons was reduced by 12% at 6 h post-I/R and increased by 8% at 24 h post-I/R. CONCLUSIONS: This work demonstrates that I/R is associated with a significant loss of different subpopulations of neurons in the myenteric plexus accompanied by morphological changes, all of which may underlie conditions related to intestinal motility disorder.


Assuntos
Isquemia/patologia , Plexo Mientérico/patologia , Receptores Purinérgicos P2X7/biossíntese , Traumatismo por Reperfusão/patologia , Animais , Biometria , Regulação para Baixo/genética , Obstrução Intestinal/complicações , Obstrução Intestinal/genética , Isquemia/etiologia , Isquemia/metabolismo , Masculino , Plexo Mientérico/metabolismo , Neurônios/patologia , Ratos , Ratos Wistar , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/metabolismo , Regulação para Cima/genética
10.
World J Gastroenterol ; 29(18): 2733-2746, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37274062

RESUMO

Ulcerative colitis (UC) and Crohn's disease (CD) are part of Inflammatory Bowel Diseases (IBD) and have pathophysiological processes such as bowel necrosis and enteric neurons and enteric glial cells. In addition, the main inflammatory mediator is related to the tumor necrosis factor-alpha (TNF-α). TNF-α is a me-diator of the intestinal inflammatory processes, thus being one of the main cytokines involved in the pathogenesis of IBD, however, its levels, when measured, are present in the serum of patients with IBD. In addition, TNF-α plays an important role in promoting inflammation, such as the production of interleukins (IL), for instance IL-1ß and IL-6. There are two receptors for TNF as following: The tumor necrosis factor 1 receptor (TNFR1); and the tumor necrosis factor 2 receptor (TNFR2). They are involved in the pathogenesis of IBD and their receptors have been detected in IBD and their expression is correlated with disease activity. The soluble TNF form binds to the TNFR1 receptor with, and its activation results in a signaling cascade effects such as apoptosis, cell proliferation and cytokine secretion. In contrast, the transmembrane TNF form can bind both to TNFR1 and TNFR2. Recent studies have suggested that TNF-α is one of the main pro-inflammatory cytokines involved in the pathogenesis of IBD, since TNF levels are present in the serum of both patients with UC and CD. Intravenous and subcutaneous biologics targeting TNF-α have revolutionized the treatment of IBD, thus becoming the best available agents to induce and maintain IBD remission. The application of antibodies aimed at neutralizing TNF-α in patients with IBD that induce a satisfactory clinical response in up to 60% of patients, and also induced long-term maintenance of disease remission in most patients. It has been suggested that anti-TNF-α agents inactivate the pro-inflammatory cytokine TNF-α by direct neutralization, i.e., resulting in suppression of inflammation. However, anti-TNF-α antibodies perform more complex functions than a simple blockade.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Receptores Tipo II do Fator de Necrose Tumoral , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Inibidores do Fator de Necrose Tumoral , Colite Ulcerativa/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Inflamação , Citocinas/metabolismo , Doença de Crohn/tratamento farmacológico
11.
Acta Histochem ; 125(1): 151985, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36495673

RESUMO

The P2X7 receptor participates in several intracellular events and acts with the pannexin-1 channel. This study examined the effects of probenecid (PB) and brilliant blue G (BBG), which are antagonists of the pannexin-1 channel and P2X7 receptor, respectively, on rat ileum enteric glial cells after on ischemia and reperfusion. The ileal vessels were occluded for 45 min with nontraumatic vascular tweezers, and reperfusion was performed for periods of 24 h and 14 and 28 days. After ischemia (IR groups), the animals were treated with BBG (BG group) or PB (PB group). The double-labeling results demonstrated the following: the P2X7 receptor was present in enteric glial cells (S100ß) and enteric neurons positive for HuC/D; enteric glial cells exhibited different phenotypes; some enteric glial cells were immunoreactive to only S100ß or GFAP; and the pannexin-1 channel was present in enteric glial cells (GFAP). Density (in cells/cm2) analyses showed that the IR group exhibited a decrease in the number of cells immunoreactive for the P2X7 receptor, pannexin-1, and HuC/D and that treatment with BBG or PB resulted in the recovery of the numbers of these cells. The number of glial cells (S100ß and GFAP) was higher in the IR group, and the treatments decreased the number of these cells to the normal value. However, the PB group did not exhibit recovery of S100ß-positive glia. The cell profile area (µm2) of S100ß-positive enteric glial cells decreased to the normal value after BBG treatment, whereas no recovery was observed in the PB group. The ileum contractile activity was decreased in the IR group and returned to baseline in the BG and PB groups. BBG and PB can effectively induce the recovery of neurons and glia cells and are thus potential therapeutic agents in the treatment of gastrointestinal tract diseases.


Assuntos
Probenecid , Receptores Purinérgicos P2X7 , Ratos , Animais , Probenecid/farmacologia , Ratos Wistar , Neuroglia , Reperfusão , Isquemia
12.
World J Gastroenterol ; 29(22): 3440-3468, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389242

RESUMO

BACKGROUND: The literature indicates that the enteric nervous system is affected in inflammatory bowel diseases (IBDs) and that the P2X7 receptor triggers neuronal death. However, the mechanism by which enteric neurons are lost in IBDs is unknown. AIM: To study the role of the caspase-3 and nuclear factor kappa B (NF-κB) pathways in myenteric neurons in a P2X7 receptor knockout (KO) mouse model of IBDs. METHODS: Forty male wild-type (WT) C57BL/6 and P2X7 receptor KO mice were euthanized 24 h or 4 d after colitis induction by 2,4,6-trinitrobenzene sulfonic acid (colitis group). Mice in the sham groups were injected with vehicle. The mice were divided into eight groups (n = 5): The WT sham 24 h and 4 d groups, the WT colitis 24 h and 4 d groups, the KO sham 24 h and 4 d groups, and the KO colitis 24 h and 4 d groups. The disease activity index (DAI) was analyzed, the distal colon was collected for immunohistochemistry analyses, and immunofluorescence was performed to identify neurons immunoreactive (ir) for calretinin, P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, and total NF-κB. We analyzed the number of calretinin-ir and P2X7 receptor-ir neurons per ganglion, the neuronal profile area (µm²), and corrected total cell fluorescence (CTCF). RESULTS: Cells double labeled for calretinin and P2X7 receptor, cleaved caspase-3, total caspase-3, phospho-NF-κB, or total NF-κB were observed in the WT colitis 24 h and 4 d groups. The number of calretinin-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (2.10 ± 0.13 vs 3.33 ± 0.17, P < 0.001; 2.92 ± 0.12 vs 3.70 ± 0.11, P < 0.05), but was not significantly different between the KO groups. The calretinin-ir neuronal profile area was increased in the WT colitis 24 h group compared to the WT sham 24 h group (312.60 ± 7.85 vs 278.41 ± 6.65, P < 0.05), and the nuclear profile area was decreased in the WT colitis 4 d group compared to the WT sham 4 d group (104.63 ± 2.49 vs 117.41 ± 1.14, P < 0.01). The number of P2X7 receptor-ir neurons per ganglion was decreased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (19.49 ± 0.35 vs 22.21 ± 0.18, P < 0.001; 20.35 ± 0.14 vs 22.75 ± 0.51, P < 0.001), and no P2X7 receptor-ir neurons were observed in the KO groups. Myenteric neurons showed ultrastructural changes in the WT colitis 24 h and 4 d groups and in the KO colitis 24 h group. The cleaved caspase-3 CTCF was increased in the WT colitis 24 h and 4 d groups compared to the WT sham 24 h and 4 d groups, respectively (485949 ± 14140 vs 371371 ± 16426, P < 0.001; 480381 ± 11336 vs 378365 ± 4053, P < 0.001), but was not significantly different between the KO groups. The total caspase-3 CTCF, phospho-NF-κB CTCF, and total NF-κB CTCF were not significantly different among the groups. The DAI was recovered in the KO groups. Furthermore, we demonstrated that the absence of the P2X7 receptor attenuated inflammatory infiltration, tissue damage, collagen deposition, and the decrease in the number of goblet cells in the distal colon. CONCLUSION: Ulcerative colitis affects myenteric neurons in WT mice but has a weaker effect in P2X7 receptor KO mice, and neuronal death may be associated with P2X7 receptor-mediated caspase-3 activation. The P2X7 receptor can be a therapeutic target for IBDs.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Animais , Masculino , Camundongos , Calbindina 2 , Caspase 3 , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/genética , Camundongos Endogâmicos C57BL , NF-kappa B
13.
Cells ; 12(13)2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443707

RESUMO

The enteric nervous system is affected by inflammatory bowel diseases (IBD). Gut microbiota ferments dietary fibers and produces short-chain fatty acids, such as Butyrate, which bind to G protein-coupled receptors, such as GPR41, and contribute to maintaining intestinal health. This work aimed to study the GPR41 in myenteric neurons and analyze the effect of Butyrate in mice submitted to experimental ulcerative colitis. The 2, 4, 6 trinitrobenzene sulfonic acid (TNBS) was injected intrarectally in C57BL/6 mice (Colitis). Sham group received ethanol (vehicle). One group was treated with 100 mg/kg of Sodium Butyrate (Butyrate), and the other groups received saline. Animals were euthanized 7 days after colitis induction. Analyzes demonstrated colocalization of GPR41 with neurons immunoreactive (-ir) to nNOS and ChAT-ir and absence of colocalization of the GPR41 with GFAP-ir glia. Quantitative results demonstrated losses of nNOS-ir, ChAT-ir, and GPR41-ir neurons in the Colitis group and Butyrate treatment attenuated neuronal loss. The number of GFAP-ir glia increased in the Colitis group, whereas Butyrate reduced the number of these cells. In addition, morphological alterations observed in the Colitis group were attenuated in the Butyrate group. The presence of GPR41 in myenteric neurons was identified, and the treatment with Butyrate attenuated the damage caused by experimental ulcerative colitis.


Assuntos
Colite Ulcerativa , Colite , Camundongos , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Camundongos Endogâmicos C57BL , Neurônios , Ácido Butírico/farmacologia
14.
Cell Tissue Res ; 349(2): 565-76, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22688956

RESUMO

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, α-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.


Assuntos
Intestino Delgado/enzimologia , Intestino Delgado/patologia , Óxido Nítrico Sintase Tipo I/genética , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/patologia , Actinas/análise , Animais , Feminino , Deleção de Genes , Intestino Delgado/metabolismo , Intestino Delgado/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Muscular , Músculo Liso/enzimologia , Músculo Liso/metabolismo , Músculo Liso/fisiopatologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/fisiopatologia
15.
World J Clin Cases ; 10(28): 9985-10003, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36246826

RESUMO

Inflammatory bowel diseases (IBDs) are characterized by inflammation in the gastrointestinal tract and include Ulcerative Colitis and Crohn's Disease. These diseases are costly to health services, substantially reduce patients' quality of life, and can lead to complications such as cancer and even death. Symptoms include abdominal pain, stool bleeding, diarrhea, and weight loss. The treatment of these diseases is symptomatic, seeking disease remission. The intestine is colonized by several microorganisms, such as fungi, viruses, and bacteria, which constitute the intestinal microbiota (IM). IM bacteria promotes dietary fibers fermentation and produces short-chain fatty acids (SCFAs) that exert several beneficial effects on intestinal health. SCFAs can bind to G protein-coupled receptors, such as GPR41 and GPR43, promoting improvements in the intestinal barrier, anti-inflammatory, and antioxidant effects. Thus, SCFAs could be a therapeutic tool for IBDs. However, the mechanisms involved in these beneficial effects of SCFAs remain poorly understood. Therefore, this paper aims to provide a review addressing the main aspects of IBDs, and a more detailed sight of SCFAs, focusing on the main effects on different aspects of the intestine with an emphasis on IBDs.

16.
World J Gastroenterol ; 28(30): 4075-4088, 2022 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-36157120

RESUMO

BACKGROUND: Clostridioides difficile (C. difficile) is the most common pathogen causing health care-associated infections. C. difficile TcdA and TcdB have been shown to activate enteric neurons; however, what population of these cells is more profoundly influenced and the mechanism underlying these effects remain unknown. AIM: To characterize a specific population of TcdA-affected myenteric neurons and investigate the role of the P2X7 receptor in TcdA-induced ileal inflammation, cell death, and the changes in the enteric nervous system in mice. METHODS: Swiss mice were used to model TcdA-induced ileitis in ileal loops exposed to TcdA (50 µg/Loop) for 4 h. To investigate the role of the P2X7 receptor, Brilliant Blue G (50 mg/kg, i.p.), which is a nonspecific P2X7 receptor antagonist, or A438079 (0.7 µg/mouse, i.p.), which is a competitive P2X7 receptor antagonist, were injected one hour prior to TcdA challenge. Ileal samples were collected to analyze the expression of the P2X7 receptor (by quantitative real-time polymerase chain reaction and immunohistochemistry), the population of myenteric enteric neurons (immunofluorescence), histological damage, intestinal inflammation, cell death (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling), neuronal loss, and S100B synthesis (immunohistochemistry). RESULTS: TcdA upregulated (P < 0.05) the expression of the P2X7 receptor gene in the ileal tissues, increasing the level of this receptor in myenteric neurons compared to that in control mice. Comparison with the control mice indicated that TcdA promoted (P < 0.05) the loss of myenteric calretinin+ (Calr) and choline acetyltransferase+ neurons and increased the number of nitrergic+ and Calr+ neurons expressing the P2X7 receptor. Blockade of the P2X7 receptor decreased TcdA-induced intestinal damage, cytokine release [interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α], cell death, enteric neuron loss, and S100B synthesis in the mouse ileum. CONCLUSION: Our findings demonstrated that TcdA induced the upregulation of the P2X7 receptor, which promoted enteric neuron loss, S100B synthesis, tissue damage, inflammation, and cell death in the mouse ileum. These findings contribute to the future directions in understanding the mechanism involved in intestinal dysfunction reported in patients after C. difficile infection.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Ileíte , Animais , Apoptose , Biotina/metabolismo , Calbindina 2 , Colina O-Acetiltransferase/metabolismo , DNA Nucleotidilexotransferase/metabolismo , Enterotoxinas , Ileíte/induzido quimicamente , Inflamação/patologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Camundongos , Neurônios/patologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos P2X7 , Fator de Necrose Tumoral alfa/metabolismo
17.
Dig Dis Sci ; 56(8): 2262-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21409380

RESUMO

PURPOSE: We investigated the effects of ischemia/reperfusion in the intestine (I/R-i) on purine receptor P2X2-immunoreactive (IR) neurons of the rat ileum. METHODS: The superior mesenteric artery was occluded for 45 min with an atraumatic vascular clamp and animals were sacrificed 4 h later. Neurons of the myenteric and submucosal plexuses were evaluated for immunoreactivity against the P2X2 receptor, nitric oxide synthase (NOS), choline acetyl transferase (ChAT), calbindin, and calretinin. RESULTS: Following I/R-i, we observed a decrease in P2X2 receptor immunoreactivity in the cytoplasm and surface membranes of neurons of the myenteric and submucosal plexuses. These studies also revealed an absence of calbindin-positive neurons in the I/R-i group. In addition, the colocalization of the P2X2 receptor with NOS, ChAT, and calretinin immunoreactivity in the myenteric plexus was decreased following I/R-i. Likewise, the colocalization between P2X2 and calretinin in neurons of the submucosal plexus was also reduced. In the I/R-i group, there was a 55.8% decrease in the density of neurons immunoreactive (IR) for the P2X2 receptor, a 26.4% reduction in NOS-IR neuron, a 25% reduction in ChAT-IR neuron, and a 47% reduction in calretinin-IR neuron. The density of P2X2 receptor and calretinin-IR neurons also decreased in the submucosal plexus of the I/R-i group. In the myenteric plexus, P2X2-IR, NOS-IR, ChAT-IR and calretinin-IR neurons were reduced in size by 50%, 49.7%, 42%, and 33%, respectively, in the I/R-i group; in the submucosal plexus, P2X2-IR and calretinin-IR neurons were reduced in size by 56% and 72.6%, respectively. CONCLUSIONS: These data demonstrate that ischemia/reperfusion of the intestine affects the expression of the P2X2 receptor in neurons of the myenteric and submucosal plexus, as well as density and size of neurons in this population. Our findings indicate that I/R-i induces changes in P2X2-IR enteric neurons that could result in alterations in intestinal motility.


Assuntos
Sistema Nervoso Entérico/metabolismo , Motilidade Gastrointestinal , Íleo/inervação , Íleo/fisiopatologia , Receptores Purinérgicos P2X2/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Animais , Calbindina 2 , Calbindinas , Colina O-Acetiltransferase/metabolismo , Íleo/metabolismo , Masculino , Artéria Mesentérica Superior/metabolismo , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Ratos , Ratos Wistar , Traumatismo por Reperfusão/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo
18.
World J Gastroenterol ; 27(46): 7909-7924, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-35046620

RESUMO

The enteric nervous system (ENS) consists of thousands of small ganglia arranged in the submucosal and myenteric plexuses, which can be negatively affected by Crohn's disease and ulcerative colitis - inflammatory bowel diseases (IBDs). IBDs are complex and multifactorial disorders characterized by chronic and recurrent inflammation of the intestine, and the symptoms of IBDs may include abdominal pain, diarrhea, rectal bleeding, and weight loss. The P2X7 receptor has become a promising therapeutic target for IBDs, especially owing to its wide expression and, in the case of other purinergic receptors, in both human and model animal enteric cells. However, little is known about the actual involvement between the activation of the P2X7 receptor and the cascade of subsequent events and how all these activities associated with chemical signals interfere with the functionality of the affected or treated intestine. In this review, an integrated view is provided, correlating the structural organization of the ENS and the effects of IBDs, focusing on cellular constituents and how therapeutic approaches through the P2X7 receptor can assist in both protection from damage and tissue preservation.


Assuntos
Colite Ulcerativa , Sistema Nervoso Entérico , Doenças Inflamatórias Intestinais , Animais , Colite Ulcerativa/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Receptores Purinérgicos P2X7 , Plexo Submucoso
19.
World J Gastrointest Pathophysiol ; 11(4): 84-103, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32587788

RESUMO

BACKGROUND: The P2X7 receptor is expressed by enteric neurons and enteric glial cells. Studies have demonstrated that administration of a P2X7 receptor antagonist, brilliant blue G (BBG), prevents neuronal loss. AIM: To report the effects of BBG in ileum enteric neurons immunoreactive (ir) following experimental ulcerative colitis in Rattus norvegicus albinus. METHODS: 2,4,6-trinitrobenzene sulfonic acid (TNBS group, n = 5) was injected into the distal colon. BBG (50 mg/kg, BBG group, n = 5) or vehicle (sham group, n = 5) was given subcutaneously 1 h after TNBS. The animals were euthanized after 24 h, and the ileum was removed. Immunohistochemistry was performed on the myenteric plexus to evaluate immunoreactivity for P2X7 receptor, neuronal nitric oxide synthase (nNOS), choline acetyltransferase (ChAT), HuC/D and glial fibrillary acidic protein. RESULTS: The numbers of nNOS-, ChAT-, HuC/D-ir neurons and glial fibrillary acidic protein-ir glial cells were decreased in the TNBS group and recovered in the BBG group. The neuronal profile area (µm2) demonstrated that nNOS-ir neurons decreased in the TNBS group and recovered in the BBG group. There were no differences in the profile areas of ChAT- and HuC/D-ir neurons. CONCLUSION: Our data conclude that ileum myenteric neurons and glial cells were affected by ulcerative colitis and that treatment with BBG had a neuroprotective effect. Thus, these results demonstrate that the P2X7 receptor may be an important target in therapeutic strategies.

20.
J Neurosci Res ; 87(16): 3568-75, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19598252

RESUMO

Protein deficiency is one of the biggest public health problems in the world, accounting for about 30-40% of hospital admissions in developing countries. Nutritional deficiencies lead to alterations in the peripheral nervous system and in the digestive system. Most studies have focused on the effects of protein-deficient diets on the enteric neurons, but not on sympathetic ganglia, which supply extrinsic sympathetic input to the digestive system. Hence, in this study, we investigated whether a protein-restricted diet would affect the quantitative structure of rat coeliac ganglion neurons. Five male Wistar rats (undernourished group) were given a pre- and postnatal hypoproteinic diet receiving 5% casein, whereas the nourished group (n = 5) was fed with 20% casein (normoproteinic diet). Blood tests were carried out on the animals, e.g., glucose, leptin, and triglyceride plasma concentrations. The main structural findings in this study were that a protein-deficient diet (5% casein) caused coeliac ganglion (78%) and coeliac ganglion neurons (24%) to atrophy and led to neuron loss (63%). Therefore, the fall in the total number of coeliac ganglion neurons in protein-restricted rats contrasts strongly with no neuron losses previously described for the enteric neurons of animals subjected to similar protein-restriction diets. Discrepancies between our figures and the data for enteric neurons (using very similar protein-restriction protocols) may be attributable to the counting method used. In light of this, further systematic investigations comparing 2-D and 3-D quantitative methods are warranted to provide even more advanced data on the effects that a protein-deficient diet may exert on sympathetic neurons. (c) 2009 Wiley-Liss, Inc.


Assuntos
Gânglios Simpáticos/patologia , Troca Materno-Fetal/fisiologia , Neurônios/patologia , Deficiência de Proteína/patologia , Análise de Variância , Animais , Animais Recém-Nascidos , Atrofia/metabolismo , Atrofia/patologia , Glicemia/metabolismo , Contagem de Células , Tamanho Celular , Feminino , Gânglios Simpáticos/metabolismo , Leptina/sangue , Masculino , Degeneração Neural/metabolismo , Neurônios/metabolismo , Tamanho do Órgão , Gravidez , Deficiência de Proteína/metabolismo , Ratos , Ratos Wistar , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA