Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(32): 13103-8, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23858441

RESUMO

Tick-borne encephalitis (TBE) virus is the most important human pathogen transmitted by ticks in Eurasia. Inactivated vaccines are available but require multiple doses and frequent boosters to induce and maintain immunity. Thus far, the goal of developing a safe, live attenuated vaccine effective after a single dose has remained elusive. Here we used a replication-defective (single-cycle) flavivirus platform, RepliVax, to generate a safe, single-dose TBE vaccine. Several RepliVax-TBE candidates attenuated by a deletion in the capsid gene were constructed using different flavivirus backbones containing the envelope genes of TBE virus. RepliVax-TBE based on a West Nile virus backbone (RV-WN/TBE) grew more efficiently in helper cells than candidates based on Langat E5, TBE, and yellow fever 17D backbones, and was found to be highly immunogenic and efficacious in mice. Live chimeric yellow fever 17D/TBE, Dengue 2/TBE, and Langat E5/TBE candidates were also constructed but were found to be underattenuated. RV-WN/TBE was demonstrated to be highly immunogenic in Rhesus macaques after a single dose, inducing a significantly more durable humoral immune response compared with three doses of a licensed, adjuvanted human inactivated vaccine. Its immunogenicity was not significantly affected by preexisting immunity against WN. Immunized monkeys were protected from a stringent surrogate challenge. These results support the identification of a single-cycle TBE vaccine with a superior product profile to existing inactivated vaccines, which could lead to improved vaccine coverage and control of the disease.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/imunologia , Encefalite Transmitida por Carrapatos/imunologia , Vacinação/métodos , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Linhagem Celular , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Vírus da Encefalite Transmitidos por Carrapatos/fisiologia , Encefalite Transmitida por Carrapatos/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Macaca mulatta , Camundongos , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia , Células Vero , Vacinas Virais/administração & dosagem
2.
Elife ; 122024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805550

RESUMO

Human H3N2 influenza viruses are subject to rapid antigenic evolution which translates into frequent updates of the composition of seasonal influenza vaccines. Despite these updates, the effectiveness of influenza vaccines against H3N2-associated disease is suboptimal. Seasonal influenza vaccines primarily induce hemagglutinin-specific antibody responses. However, antibodies directed against influenza neuraminidase (NA) also contribute to protection. Here, we analysed the antigenic diversity of a panel of N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. The antigenic breadth of these NAs was determined based on the NA inhibition (NAI) of a broad panel of ferret and mouse immune sera that were raised by infection and recombinant N2 NA immunisation. This assessment allowed us to distinguish at least four antigenic groups in the N2 NAs derived from human H3N2 viruses that circulated between 2009 and 2017. Computational analysis further revealed that the amino acid residues in N2 NA that have a major impact on susceptibility to NAI by immune sera are in proximity of the catalytic site. Finally, a machine learning method was developed that allowed to accurately predict the impact of mutations that are present in our N2 NA panel on NAI. These findings have important implications for the renewed interest to develop improved influenza vaccines based on the inclusion of a protective NA antigen formulation.


Two proteins, the hemagglutinin and the neuraminidase, protrude from the surface of the influenza virus. Their detection by the immune system allows the host organism to mount defences against the viral threat. The virus evolves in response to this pressure, which manifests as changes in the appearance of its hemagglutinin and neuraminidase. This process, known as antigenic drift, leads to the proteins evading detection. It is also why flu vaccines require frequent updates, as they rely on 'training' the immune system to recognise the most important strains in circulation ­ primarily by exposing it to appropriate versions of hemagglutinin. While the antigenic drift of hemagglutinin has been extensively studied, much less is known about how the neuraminidase accumulates mutations, and how these affect the immune response. To investigate this question, Catani et al. selected 43 genetically distant neuraminidases from human viral samples isolated between 2009 and 2017. Statistical analyses were applied to define their relatedness, revealing that a group of closely related neuraminidases predominated from 2009 to 2015, before they were being taken over by a second group. A third group, which was identified in viruses isolated in 2013, was remarkably close to the neuraminidase of strains that circulated in the late 1990s. The fourth and final group of neuraminidases was derived from influenza viruses that normally circulate in pigs but can also occasionally infect humans. Next, Catani et al. examined the immune response that these 43 neuraminidases could elicit in mice, as well as in ferrets ­ the animal most traditionally used in influenza research. This allowed them to pinpoint which changes in the neuraminidase sequences were important to escape recognition by the host. Data obtained from the two model species were comparable, suggesting that these experiments could be conducted on mice going forward, which are easier to work with than ferrets. Finally, Catani et al. used machine learning to build a computational model that could predict how strongly the immune system would respond to a specific neuraminidase variant. These findings could help guide the development of new vaccines that include neuraminidases tailored to best prime and train the immune system against a larger variety of strains. This may aid the development of 'supra-seasonal' vaccines that protect against a broad range of influenza viruses, reducing the need for yearly updates.


Assuntos
Antígenos Virais , Furões , Vírus da Influenza A Subtipo H3N2 , Influenza Humana , Neuraminidase , Neuraminidase/imunologia , Neuraminidase/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/enzimologia , Humanos , Animais , Antígenos Virais/imunologia , Antígenos Virais/genética , Camundongos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Influenza Humana/virologia , Anticorpos Antivirais/imunologia , Vacinas contra Influenza/imunologia , Variação Antigênica , Proteínas Virais/imunologia , Proteínas Virais/genética , Proteínas Virais/química , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia
3.
Virology ; 550: 21-26, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32866728

RESUMO

Human respiratory syncytial virus (RSV) is a major cause of serious respiratory tract infections in infants and the elderly. Recently it was shown that the RSV G glycoprotein mediates attachment to cells using CX3CR1 as a receptor, and that G-specific neutralizing antibodies can be detected using human airway epithelial (HAE) cell cultures. To investigate the contributions of G-specific antibodies to RSV neutralization, we performed HAE neutralization assays on sera from RSV G-immunized mice or RSV-infected infants. We confirmed that G-specific neutralization using serum from mice or humans could only be detected on HAE cultures. We also found that RSV G-specific antibodies in infants were either subgroup specific or cross-neutralizing. Altogether, our results suggest that G is an important target for generating neutralizing antibodies and would be beneficial to include in an RSV vaccine. Further, inclusion of G antigens from both RSV subgroups may enhance the vaccine cross protection potency.


Assuntos
Anticorpos Neutralizantes/biossíntese , Anticorpos Antivirais/biossíntese , Antígenos Virais/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Proteínas Virais de Fusão/imunologia , Animais , Antígenos Virais/administração & dosagem , Antígenos Virais/genética , Receptor 1 de Quimiocina CX3C/genética , Chlorocebus aethiops , Células Epiteliais/imunologia , Células Epiteliais/virologia , Feminino , Expressão Gênica , Humanos , Soros Imunes/química , Imunização , Camundongos , Camundongos Endogâmicos BALB C , Modelos Biológicos , Testes de Neutralização , Ligação Proteica , Receptores Virais/genética , Receptores Virais/imunologia , Mucosa Respiratória/imunologia , Mucosa Respiratória/virologia , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/patogenicidade , Células Vero , Proteínas Virais de Fusão/administração & dosagem , Proteínas Virais de Fusão/genética
4.
Sci Rep ; 8(1): 13206, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30181550

RESUMO

Zika virus (ZIKV) is an emerging mosquito-borne pathogen representing a global health concern. It has been linked to fetal microcephaly and other birth defects and neurological disorders in adults. Sanofi Pasteur has engaged in the development of an inactivated ZIKV vaccine, as well as a live chimeric vaccine candidate ChimeriVax-Zika (CYZ) that could become a preferred vaccine depending on future ZIKV epidemiology. This report focuses on the CYZ candidate that was constructed by replacing the pre-membrane and envelope (prM-E) genes in the genome of live attenuated yellow fever 17D vaccine virus (YF 17D) with those from ZIKV yielding a viable CYZ chimeric virus. The replication rate of CYZ in the Vero cell substrate was increased by using a hybrid YF 17D-ZIKV signal sequence for the prM protein. CYZ was highly attenuated both in mice and in human in vitro models (human neuroblastoma and neuronal progenitor cells), without the need for additional attenuating modifications. It exhibited significantly reduced viral loads in organs compared to a wild-type ZIKV and a complete lack of neuroinvasion following inoculation of immunodeficient A129 mice. A single dose of CYZ elicited high titers of ZIKV-specific neutralizing antibodies in both immunocompetent and A129 mice and protected animals from ZIKV challenge. The data indicate that CYZ is a promising vaccine candidate against ZIKV.


Assuntos
Vacinas Atenuadas/imunologia , Vacinas Virais/imunologia , Vírus da Febre Amarela/imunologia , Infecção por Zika virus/prevenção & controle , Zika virus/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Camundongos , Camundongos Endogâmicos ICR , Vacinas Atenuadas/uso terapêutico , Células Vero , Carga Viral , Vacinas Virais/uso terapêutico , Infecção por Zika virus/imunologia
5.
PLoS One ; 8(2): e57224, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468943

RESUMO

Genital herpes is a sexually transmitted infection (STI) caused by herpes simplex virus 2 (HSV-2) and to a lesser extent herpes simplex virus 1 (HSV-1). Infection by HSV-2 is life-long and is associated with significant cost to healthcare systems and social stigma despite the highly prevalent nature of the disease. For instance, the proportion of HSV-2 seropositive to seronegative adults is approximately 1 in 5 in the US and greater than 4 in 5 in some areas of sub-Saharan Africa. The replication-defective vaccine strain virus dl5-29 was re-derived using cells appropriate for GMP manufacturing and renamed ACAM529. Immunization with dl5-29 was previously reported to be protective both in mice and in guinea pigs, however these studies were performed with vaccine that was purified using methods that cannot be scaled for manufacturing of clinical material. Here we describe methods which serve as a major step towards preparation of ACAM529 which may be suitable for testing in humans. ACAM529 can be harvested from infected cell culture of the trans-complementing cell line AV529 clone 19 (AV529-19) without mechanical cell disruption. ACAM529 may then be purified with respect to host cell DNA and proteins by a novel purification scheme, which includes a combination of endonuclease treatment, depth filtration, anion-exchange chromatography and ultrafiltration/diafiltration (UF/DF). The resultant virus retains infectivity and is ∼ 200-fold more pure with respect to host cell DNA and proteins than is ACAM529 purified by ultracentrifugation. Additionally, we describe a side-by-side comparison of chromatography-purified ACAM529 with sucrose cushion-purified ACAM529, which shows that both preparations are equally immunogenic and protective when tested in vivo.


Assuntos
Herpes Genital/terapia , Herpesvirus Humano 2/imunologia , Vacinas Virais/uso terapêutico , Animais , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Chlorocebus aethiops , Cromatografia por Troca Iônica , Sulfato de Dextrana/química , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase , Ultracentrifugação , Células Vero , Vacinas Virais/imunologia
6.
PLoS One ; 7(10): e46714, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071620

RESUMO

Herpes simplex virus type 2 (HSV-2) is a sexually transmitted virus that is highly prevalent worldwide, causing a range of symptoms that result in significant healthcare costs and human suffering. ACAM529 is a replication-defective vaccine candidate prepared by growing the previously described dl5-29 on a cell line appropriate for GMP manufacturing. This vaccine, when administered subcutaneously, was previously shown to protect mice from a lethal vaginal HSV-2 challenge and to afford better protection than adjuvanted glycoprotein D (gD) in guinea pigs. Here we show that ACAM529 given via the intramuscular route affords significantly greater immunogenicity and protection in comparison with subcutaneous administration in the mouse vaginal HSV-2 challenge model. Further, we describe a side-by-side comparison of intramuscular ACAM529 with a gD vaccine across a range of challenge virus doses. While differences in protection against death are not significant, ACAM529 protects significantly better against mucosal infection, reducing peak challenge virus shedding at the highest challenge dose by over 500-fold versus 5-fold for gD. Over 27% (11/40) of ACAM529-immunized animals were protected from viral shedding while 2.5% (1/40) were protected by the gD vaccine. Similarly, 35% (7/20) of mice vaccinated with ACAM529 were protected from infection of their dorsal root ganglia while none of the gD-vaccinated mice were protected. These results indicate that measuring infection of the vaginal mucosa and of dorsal root ganglia over a range of challenge doses is more sensitive than evaluating survival at a single challenge dose as a means of directly comparing vaccine efficacy in the mouse vaginal challenge model. The data also support further investigation of ACAM529 for prophylaxis in human subjects.


Assuntos
Herpes Genital/prevenção & controle , Vacinas contra o Vírus do Herpes Simples/administração & dosagem , Herpesvirus Humano 2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Feminino , Gânglios Espinais/virologia , Herpes Genital/imunologia , Vacinas contra o Vírus do Herpes Simples/imunologia , Humanos , Injeções Intramusculares , Camundongos , Camundongos Endogâmicos BALB C , Oligodesoxirribonucleotídeos/administração & dosagem , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vagina/virologia , Proteínas do Envelope Viral/administração & dosagem , Proteínas do Envelope Viral/imunologia
7.
Vaccine ; 29(32): 5184-94, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21620917

RESUMO

RepliVax, a novel replication-defective vaccine platform has recently been described as a suitable means of generating potent vaccines targeting flaviviruses. In this study, we directly compared attenuation, immunogenicity and efficacy of several prototype RepliVax constructs to available, well characterized live attenuated (LAV) and inactivated (INV) flavivirus vaccine controls in mice and hamsters. Other important aspects of general mechanisms and properties of RepliVax vaccines were also studied. The prototypes were found to be nonpathogenic in sensitive suckling mouse neurovirulence tests, and highly immunogenic and efficacious in mice and hamsters, with evidence that immunogenicity can be comparable to LAV controls in terms of both magnitude and durability of response. Our data also suggest that choice of inoculation route can be beneficial for maximizing RepliVax immunogenicity. Additionally, different vaccine constructs can be administered as cocktail formulations without compromising immunogenicity of individual components. RepliVax constructs were determined to induce a Th1 biased immune response, similar to LAVs, and different from INV inducing a Th2 type response. The results presented validate the utility of the RepliVax platform for development of novel flavivirus vaccines.


Assuntos
Infecções por Flavivirus/imunologia , Infecções por Flavivirus/prevenção & controle , Flavivirus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais , Cricetinae , Ensaio de Imunoadsorção Enzimática , Flavivirus/genética , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Vacinas Atenuadas/imunologia , Vacinas de Produtos Inativados/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Replicação Viral
8.
Vaccine ; 25(37-38): 6661-71, 2007 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-17693000

RESUMO

Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.


Assuntos
Flavivirus/genética , Flavivirus/imunologia , Engenharia Genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Vacinas contra o Vírus do Nilo Ocidental/genética , Vacinas contra o Vírus do Nilo Ocidental/imunologia , Animais , Sequência de Bases , Peso Corporal/imunologia , Linhagem Celular , Cricetinae , Feminino , Flavivirus/patogenicidade , Genoma Viral/genética , Humanos , Cinética , Camundongos , Vacinas Atenuadas/efeitos adversos , Virulência , Replicação Viral , Vacinas contra o Vírus do Nilo Ocidental/efeitos adversos
9.
Biologicals ; 33(3): 131-44, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15975826

RESUMO

Current requirements for control of live viral vaccines, including yellow fever 17D, produced from potentially neurotropic wild-type viruses include tests for neurovirulence in nonhuman primates. We have used yellow fever 17D virus as a live vector for novel flavivirus vaccines (designated ChimeriVax) against dengue, Japanese encephalitis (JE), and West Nile (WN) viruses. For control of these vaccines, it would be preferable to substitute a test in mice for the test in a higher species (monkeys). In this study, we compare the neurovirulence of ChimeriVax vaccine candidates in suckling mice inoculated by the intracerebral (IC) route with graded doses of the test article or yellow fever 17D vaccine as a reference control. Mortality ratio and survival distribution are the outcome measures. The monkey safety test is performed as described for control of yellow fever vaccines. In both mice and monkeys, all chimeric vaccines were significantly less neurovirulent than yellow fever 17D vaccine. The test in suckling mice discriminated between strains of two different vaccines (ChimeriVax-JE and ChimeriVax-DEN1) differing by a single amino acid change, and was more sensitive for detecting virulence differences than the test in monkeys. The results indicate that the suckling mouse test is simple to perform, highly sensitive and, with appropriate validation, could complement or possibly even replace the neurovirulence component of the monkey safety test. The test in infant mice is particularly useful as a means of demonstrating biological consistency across seed virus and vaccine lots.


Assuntos
Alternativas ao Uso de Animais , Infecções por Flavivirus/prevenção & controle , Flavivirus/imunologia , Vacinas Virais/efeitos adversos , Animais , Animais Recém-Nascidos , Sistema Nervoso Central/virologia , Chlorocebus aethiops , Flavivirus/patogenicidade , Haplorrinos , Camundongos , Sensibilidade e Especificidade , Células Vero , Virulência
10.
J Virol ; 78(22): 12497-507, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507637

RESUMO

The availability of ChimeriVax vaccine technology for delivery of flavivirus protective antigens at the time West Nile (WN) virus was first detected in North America in 1999 contributed to the rapid development of the vaccine candidate against WN virus described here. ChimeriVax-Japanese encephalitis (JE), the first live- attenuated vaccine developed with this technology has successfully undergone phase I and II clinical trials. The ChimeriVax technology utilizes yellow fever virus (YF) 17D vaccine strain capsid and nonstructural genes to deliver the envelope gene of other flaviviruses as live-attenuated chimeric viruses. Amino acid sequence homology between the envelope protein (E) of JE and WN viruses facilitated targeting attenuating mutation sites to develop the WN vaccine. Here we discuss preclinical studies with the ChimeriVax-WN virus in mice and macaques. ChimeriVax-WN virus vaccine is less neurovirulent than the commercial YF 17D vaccine in mice and nonhuman primates. Attenuation of the virus is determined by the chimeric nature of the construct containing attenuating mutations in the YF 17D virus backbone and three point mutations introduced to alter residues 107, 316, and 440 in the WN virus E protein gene. The safety, immunogenicity, and efficacy of the ChimeriVax-WN(02) vaccine in the macaque model indicate the vaccine candidate is expected to be safe and immunogenic for humans.


Assuntos
Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Vírus do Nilo Ocidental/imunologia , Vírus da Febre Amarela/imunologia , Animais , Sequência de Bases , Quimera , Chlorocebus aethiops , Feminino , Macaca fascicularis , Macaca mulatta , Camundongos , Camundongos Endogâmicos ICR , Dados de Sequência Molecular , Vacinas Atenuadas/efeitos adversos , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/efeitos adversos , Virulência , Vírus do Nilo Ocidental/genética , Vírus da Febre Amarela/genética
11.
J Virol ; 76(4): 1932-43, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11799188

RESUMO

A chimeric yellow fever (YF) virus/Japanese encephalitis (JE) virus vaccine (ChimeriVax-JE) was constructed by insertion of the prM-E genes from the attenuated JE virus SA14-14-2 vaccine strain into a full-length cDNA clone of YF 17D virus. Passage in fetal rhesus lung (FRhL) cells led to the emergence of a small-plaque virus containing a single Met-->Lys amino acid mutation at E279, reverting this residue from the SA14-14-2 to the wild-type amino acid. A similar virus was also constructed by site-directed mutagenesis (J. Arroyo, F. Guirakhoo, S. Fenner, Z.-X. Zhang, T. P. Monath, and T. J. Chambers, J. Virol. 75:934-942, 2001). The E279 mutation is located in a beta-sheet in the hinge region of the E protein that is responsible for a pH-dependent conformational change during virus penetration from the endosome into the cytoplasm of the infected cell. In independent transfection-passage studies with FRhL or Vero cells, mutations appeared most frequently in hinge 4 (bounded by amino acids E266 to E284), reflecting genomic instability in this functionally important region. The E279 reversion caused a significant increase in neurovirulence as determined by the 50% lethal dose and survival distribution in suckling mice and by histopathology in rhesus monkeys. Based on sensitivity and comparability of results with those for monkeys, the suckling mouse is an appropriate host for safety testing of flavivirus vaccine candidates for neurotropism. After intracerebral inoculation, the E279 Lys virus was restricted with respect to extraneural replication in monkeys, as viremia and antibody levels (markers of viscerotropism) were significantly reduced compared to those for the E279 Met virus. These results are consistent with the observation that empirically derived vaccines developed by mouse brain passage of dengue and YF viruses have increased neurovirulence for mice but reduced viscerotropism for humans.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/patogenicidade , Glicoproteínas de Membrana/genética , Mutação Puntual , Proteínas Recombinantes de Fusão/genética , Proteínas do Envelope Viral/genética , Vacinas Virais/efeitos adversos , Vírus da Febre Amarela/patogenicidade , Animais , Anticorpos Antivirais/sangue , Vírus da Encefalite Japonesa (Espécie)/genética , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Encefalite Japonesa/fisiopatologia , Encefalite Japonesa/prevenção & controle , Encefalite Japonesa/virologia , Feminino , Humanos , Vacinas contra Encefalite Japonesa/efeitos adversos , Macaca mulatta , Masculino , Glicoproteínas de Membrana/química , Camundongos , Camundongos Endogâmicos ICR , Vacinas Atenuadas/efeitos adversos , Proteínas do Envelope Viral/química , Viremia/virologia , Virulência , Febre Amarela/fisiopatologia , Febre Amarela/prevenção & controle , Febre Amarela/virologia , Vírus da Febre Amarela/genética , Vírus da Febre Amarela/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA