Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 315: 12-22, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27899278

RESUMO

Molecular mechanisms on sepsis progression are linked to the imbalance between reactive oxygen species (ROS) production and cellular antioxidant capacity. Previous studies demonstrated that benznidazole (BZL), known for its antiparasitic action on Trypanosoma cruzi, has immunomodulatory effects, increasing survival in C57BL/6 mice in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). The mechanism by which BZL inhibits inflammatory response in sepsis is poorly understood. Also, our group recently reported that BZL is able to activate the nuclear factor erytroide-derived 2-Like 2 (NRF2) in vitro. The aim of the present work was to delineate the beneficial role of BZL during sepsis, analyzing its effects on the cellular redox status and the possible link to the innate immunity receptor TLR4. Specifically, we analyzed the effect of BZL on Nrf2 regulation and TLR4 expression in liver of mice 24hours post-CLP. BZL was able to induce NRF2 nuclear protein localization in CLP mice. Also, we found that protein kinase C (PKC) is involved in the NRF2 nuclear accumulation and induction of its target genes. In addition, BZL prompted a reduction in hepatic CLP-induced TLR4 protein membrane localization, evidencing its immunomodulatory effects. Together, our results demonstrate that BZL induces hepatic NRF2 activation with the concomitant increase in the antioxidant defenses, and the attenuation of inflammatory response, in part, by inhibiting TLR4 expression in a murine model of sepsis.


Assuntos
Doença de Chagas/tratamento farmacológico , Modelos Animais de Doenças , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Nitroimidazóis/farmacologia , Sepse/tratamento farmacológico , Tripanossomicidas/farmacologia , Animais , Antioxidantes/metabolismo , Regulação para Baixo/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Nitroimidazóis/uso terapêutico , Estresse Oxidativo , Receptor 4 Toll-Like/metabolismo , Tripanossomicidas/uso terapêutico
2.
Mem Inst Oswaldo Cruz ; 111(11): 707-711, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27783718

RESUMO

The effect of benznidazole (BZL) on the expression and activity of P-glycoprotein (P-gp, ABCB1) and multidrug resistance-associated protein 2 (MRP2, ABCC2), the two major transporters of endogenous and exogenous compounds, was evaluated in differentiated THP-1 cells. BZL induced P-gp and MRP2 proteins in a concentration-dependent manner. The increase in mRNA levels of both transporters suggests transcriptional regulation. P-gp and MRP2 activities correlated with increased protein levels. BZL intracellular accumulation was significantly lower in BZL-pre-treated cells than in control cells. PSC833 (a P-gp inhibitor) increased the intracellular BZL concentration in both pre-treated and control cells, confirming P-gp participation in BZL efflux.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Doença de Chagas/tratamento farmacológico , Macrófagos/efeitos dos fármacos , Nitroimidazóis/uso terapêutico , Tripanossomicidas/uso terapêutico , Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Membro 2 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Linhagem Celular , Doença de Chagas/metabolismo , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Nitroimidazóis/farmacologia , Tripanossomicidas/farmacologia , Regulação para Cima
3.
Antimicrob Agents Chemother ; 57(10): 4894-902, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23877690

RESUMO

The effect of antichagasic benznidazole (BZL; 100 mg/kg body weight/day, 3 consecutive days, intraperitoneally) on biotransformation systems and ABC transporters was evaluated in rats. Expression of cytochrome P-450 (CYP3A), UDP-glucuronosyltransferase (UGT1A), glutathione S-transferases (alpha glutathione S-transferase [GST-α], GST-µ, and GST-π), multidrug-resistance-associated protein 2 (Mrp2), and P glycoprotein (P-gp) in liver, small intestine, and kidney was estimated by Western blotting. Increases in hepatic CYP3A (30%) and GST-µ (40%) and in intestinal GST-α (72% in jejunum and 136% in ileum) were detected. Significant increases in Mrp2 (300%) and P-gp (500%) proteins in liver from BZL-treated rats were observed without changes in kidney. P-gp and Mrp2 were also increased by BZL in jejunum (170% and 120%, respectively). In ileum, only P-gp was increased by BZL (50%). The activities of GST, P-gp, and Mrp2 correlated well with the upregulation of proteins in liver and jejunum. Plasma decay of a test dose of BZL (5 mg/kg body weight) administered intraduodenally was faster (295%) and the area under the concentration-time curve (AUC) was lower (41%) for BZL-pretreated rats than for controls. The biliary excretion of BZL was higher (60%) in the BZL group, and urinary excretion of BZL did not show differences between groups. The amount of absorbed BZL in intestinal sacs was lower (25%) in pretreated rats than in controls. In conclusion, induction of biotransformation enzymes and/or transporters by BZL could increase the clearance and/or decrease the intestinal absorption of coadministered drugs that are substrates of these systems, including BZL itself.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Nitroimidazóis/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Western Blotting , Expressão Gênica/efeitos dos fármacos , Glutationa Transferase/metabolismo , Absorção Intestinal/efeitos dos fármacos , Isoenzimas/metabolismo , Masculino , Nitroimidazóis/sangue , Nitroimidazóis/farmacocinética , Ratos
4.
Drug Metab Dispos ; 41(2): 275-80, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23077105

RESUMO

Multidrug resistance-associated protein 3 (Mrp3; Abcc3) expression and activity are up-regulated in rat liver after in vivo repeated administration of ethynylestradiol (EE), a cholestatic synthetic estrogen, whereas multidrug resistance-associated protein 2 (Mrp2) is down-regulated. This study was undertaken to determine whether Mrp3 induction results from a direct effect of EE, independent of accumulation of any endogenous common Mrp2/Mrp3 substrates resulting from cholestasis and the potential mediation of estrogen receptor (ER). In in vivo studies, male rats were given a single, noncholestatic dose of EE (5 mg/kg s.c.), and basal bile flow and the biliary excretion rate of bile salts and glutathione were measured 5 hours later. This treatment increased Mrp3 mRNA by 4-fold, detected by real-time polymerase chain reaction, despite the absence of cholestasis. Primary culture of rat hepatocytes incubated with EE (1-10 µM) for 5 hours exhibited a 3-fold increase in Mrp3 mRNA (10 µM), consistent with in vivo findings. The increase in Mrp3 mRNA by EE was prevented by actinomycin D, indicating transcriptional regulation. When hepatocytes were incubated with an ER antagonist [7α,17ß-[9-[(4,4,5,5,5-Pentafluoropentyl)sulfinyl]nonyl]estra-1,3,5(10)-triene-3,17-diol (ICI182/780), 1 µM], in addition to EE, induction of Mrp3 mRNA was abolished, implicating ER as a key mediator. EE induced an increase in ER-α phosphorylation at 30 minutes and expression of c-Jun, a well-known ER target gene, at 60 minutes, as detected by Western blotting of nuclear extracts. These increases were prevented by ICI182/780. In summary, EE increased the expression of hepatic Mrp3 transcriptionally and independently of any cholestatic manifestation and required participation of an ER, most likely ER-α, through its phosphorylation.


Assuntos
Colestase/metabolismo , Receptor alfa de Estrogênio/agonistas , Estrogênios/farmacologia , Etinilestradiol/farmacologia , Fígado/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Células Cultivadas , Colestase/genética , Dactinomicina/farmacologia , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/metabolismo , Fulvestranto , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Inibidores da Síntese de Ácido Nucleico/farmacologia , Fosforilação , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-jun/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Tempo , Regulação para Cima
5.
Drug Metab Dispos ; 40(7): 1252-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22453052

RESUMO

The ability of the liver, small intestine, and kidney to synthesize and subsequently eliminate dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), was assessed in rats treated with glucagon-like peptide 2 (GLP-2, 12 µg/100 g b.wt. s.c. every 12 h for 5 consecutive days). An in vivo perfused jejunum model with simultaneous bile and urine collection was used. A single intravenous dose of 30 µmol/kg b.wt. 1-chloro-2,4-dinitrobenzene (CDNB) was administered, and its conjugate, DNP-SG, and dinitrophenyl cysteinyl glycine (DNP-CG), resulting from the action of γ-glutamyltransferase on DNP-SG, were determined in bile, intestinal perfusate, and urine by high-performance liquid chromatography. Tissue content of DNP-SG was also assessed in liver, intestine, and kidneys. Biliary excretion of DNP-SG+DNP-CG was decreased in GLP-2 rats with respect to controls. In contrast, their intestinal excretion was substantially increased, whereas urinary elimination was not affected. Western blot and real-time polymerase chain reaction studies revealed preserved levels of Mrp2 protein and mRNA in liver and renal cortex and a significant increase in intestine in response to GLP-2 treatment. Tissue content of DNP-SG detected 5 min after CDNB administration was decreased in liver, increased in intestine, and unchanged in kidney in GLP-2 versus control group, consistent with GLP-2-induced down-regulation of expression of glutathione transferase (GST) Mu in liver and up-regulation of GST-Alpha in intestine at both protein and mRNA levels. In conclusion, GLP-2 induced selective changes in hepatic and intestinal disposition of a common GST and Mrp2 substrate administered systemically that could be of pharmacological or toxicological relevance under therapeutic treatment conditions.


Assuntos
Dinitroclorobenzeno/farmacocinética , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Jejuno/metabolismo , Rim/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Bile/metabolismo , Dinitrobenzenos/metabolismo , Dinitroclorobenzeno/farmacologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Glutationa/análogos & derivados , Glutationa/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Jejuno/efeitos dos fármacos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , RNA Mensageiro/genética , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo
6.
Life Sci ; 287: 119936, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34506838

RESUMO

AIM: P-glycoprotein (P-gp) plays a critical role in the excretion of xenobiotics into bile. Previous studies have demonstrated that prolactin (PRL) regulates biotransformation and bile salt transport. Here we investigate whether the capability of the liver to transport xenobiotics into bile is altered in hyperprolactinemic states studying the modulation of hepatic P-gp by PRL. METHODS: We used lactating post-partum rats (PP), as a model of physiological hyperprolactinemia (15 and 21 days after delivery: PP15 and PP21, respectively), and ovariectomized rats treated with PRL (300 µg/day, 7 days, via osmotic minipumps, OVX + PRL). Hepatic P-gp expression and activity were evaluated by western blotting and using rhodamine 123 as substrate in vivo, respectively. Since P-gp is encoded by Mdr1a and Mdr1b in rodents, we quantified their expression by qPCR in primary hepatocyte cultures exposed to 0.1 µg/ml of PRL after 12 h. To further study the mechanism of hepatic P-gp modulation by PRL, hepatocytes were pretreated with actinomycin D and then exposed to PRL (0.1 µg/ml) for 12 h. KEY FINDINGS: We found increased hepatic P-gp protein expression and activity in PP15 and OVX + PRL. Also, a significant increase in Mdr1a and Mdr1b mRNA levels was observed in primary hepatocyte cultures exposed to PRL, pointing out the hormone direct action. Actinomycin D prevented these increases, confirming a transcriptional up-regulation of P-gp by PRL. SIGNIFICANCE: These findings suggest the possibility of an increased biliary excretion of xenobiotics substrates of P-gp, including therapeutic agents, affecting their pharmaco/toxicokinetics in hyperprolactinemic situations.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Fígado/efeitos dos fármacos , Fígado/metabolismo , Prolactina/metabolismo , Prolactina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Lactação/efeitos dos fármacos , Lactação/metabolismo , Ovariectomia , Ratos , Ratos Wistar , Ovinos
7.
J Pharmacol Exp Ther ; 335(2): 332-41, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20719938

RESUMO

The effects of glucagon-like peptide 2 (GLP-2) on expression and activity of jejunal multidrug resistance-associated protein 2 (Mrp2; Abcc2) and glutathione transferase (GST) were evaluated. After GLP-2 treatment (12 µg/100 g b.wt. s.c., every 12 h, for 5 consecutive days), Mrp2 and the α class of GST proteins and their corresponding mRNAs were increased, suggesting a transcriptional regulation. Mrp2 was localized at the apical membrane of the enterocyte in control and GLP-2 groups, as detected by confocal immunofluorescence microscopy. As a functional assay, everted intestinal sacs were incubated in the presence of 1-chloro-2,4-dinitrobenzene in the mucosal compartment, and the glutathione-conjugated derivative, dinitrophenyl-S-glutathione (DNP-SG; model Mrp2 substrate), was detected in the same compartment by high-performance liquid chromatography. A significant increase in apical secretion of DNP-SG was detected in the GLP-2 group, consistent with simultaneous up-regulation of Mrp2 and GST. GLP-2 also promoted an increase in cAMP levels as detected in homogenates of intestinal mucosa. Treatment of rats with 2',3'-dideoxyadenosine (DDA), a specific inhibitor of adenylyl cyclase, abolished the increase in cAMP levels and Mrp2 protein promoted by GLP-2, suggesting cAMP as a mediator of Mrp2 modulation. Increased expression of Mrp2 and cAMP levels in response to GLP-2 occurred not only at the tip but also at the middle region of the villus, where constitutive expression of Mrp2 is normally low. In conclusion, our study suggests a role for GLP-2 in the prevention of cell toxicity of the intestinal mucosa by increasing Mrp2 chemical barrier function.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Peptídeo 2 Semelhante ao Glucagon/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Inibidores de Adenilil Ciclases , Animais , Western Blotting , Cromatografia Líquida de Alta Pressão , AMP Cíclico/metabolismo , Didesoxiadenosina/farmacologia , Enterócitos/efeitos dos fármacos , Enterócitos/enzimologia , Enterócitos/metabolismo , Enterócitos/patologia , Feminino , Imunofluorescência , Peptídeo 2 Semelhante ao Glucagon/fisiologia , Glutationa Transferase/biossíntese , Mucosa Intestinal/enzimologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Jejuno/enzimologia , Jejuno/metabolismo , Jejuno/patologia , Lactação/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Drug Metab Dispos ; 37(6): 1277-85, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19299525

RESUMO

The effect of the cholestatic estrogens ethynylestradiol (EE) and estradiol 17beta-D-glucuronide (E2-17G) on expression and activity of intestinal multidrug resistant-associated protein 2 (Mrp2, Abcc2) was studied in rats. Expression and localization of Mrp2 were evaluated by Western blotting, real-time polymerase chain reaction, and confocal immunofluorescence microscopy. Mrp2 transport activity toward dinitrophenyl-S-glutathione (DNP-SG) was assessed in vitro in intestinal sacs. EE, administered subcutaneously at a 5 mg/kg b.wt. dose, for 5 consecutive days, produced a marked decrease in Mrp2 expression at post-transcriptional level, without affecting its normal localization at the apical membrane of the enterocyte. This effect was selective because expression of other ATP-binding cassette proteins such as breast cancer resistance protein and Mrp3 were not affected and that of multidrug resistance protein 1 was only minimally impaired. Consistent with down-regulation of expression of Mrp2, a significant impairment in serosal to mucosal transport of DNP-SG and in protection against absorption of this same compound were registered. Simultaneous administration of EE with spironolactone (200 micromol/kg b.wt./day for 3 days), an Mrp2 inducer, prevented these alterations, confirming down-regulation of expression of Mrp2 by EE as a major component of functional changes. Incorporation of E2-17G (30 microM) in the serosal medium of intestinal sacs decreased serosal to mucosal transport of DNP-SG, probably because of competitive inhibition, without affecting normal Mrp2 expression or localization. Our data indicate impairment of function of intestinal Mrp2 by both cholestatic estrogens, although through a different mechanism. This finding represents an aggravation of deteriorated hepatic Mrp2 function that could further increase bioavailability of specific xenobiotics after oral exposure.


Assuntos
Colestase/metabolismo , Estrogênios/farmacologia , Expressão Gênica/efeitos dos fármacos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico Ativo/efeitos dos fármacos , Biomarcadores/metabolismo , Peso Corporal/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Estradiol/análogos & derivados , Estradiol/farmacologia , Mucosa Intestinal/metabolismo , Masculino , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Wistar
9.
Drug Metab Dispos ; 36(3): 475-80, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18096675

RESUMO

Renal and intestinal disposition of acetaminophen glucuronide (APAP-GLU), a common substrate for multidrug resistance-associated proteins 2 and 3 (Mrp2 and Mrp3), was assessed in bile duct-ligated rats (BDL) 7 days after surgery using an in vivo perfused jejunum model with simultaneous urine collection. Doses of 150 mg/kg b.w. (i.v.) or 1 g/kg b.w. (i.p.) of acetaminophen (APAP) were administered, and its glucuronide was determined in bile (only Shams), urine, and intestinal perfusate throughout a 150-min period. Intestinal excretion of APAP-GLU was unchanged or decreased (-58%) by BDL for the 150 mg and 1 g/kg b.w. doses of APAP, respectively. In contrast, renal excretion was increased by 200 and 320%, respectively. Western studies revealed decreased levels of apical Mrp2 in liver and jejunum but increased levels in renal cortex from BDL animals, whereas Mrp3 was substantially increased in liver and not affected in kidney or intestine. The global synthesis of APAP-GLU, determined as the sum of cumulative excretions, was higher in BDL rats (+51 and +110%) for these same doses of APAP as a consequence of a significant increase in functional liver mass, with no changes in specific glucuronidating activity. Expression of apical breast cancer resistance protein, which also transports nontoxic metabolites of APAP, was decreased by BDL in liver and renal cortex, suggesting a minor participation of this route. We demonstrate a more efficient hepatic synthesis and basolateral excretion of APAP-GLU followed by its urinary elimination in BDL group, the latter two processes consistent with up-regulation of liver Mrp3 and renal Mrp2.


Assuntos
Acetaminofen/análogos & derivados , Acetaminofen/metabolismo , Fígado/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/administração & dosagem , Acetaminofen/urina , Animais , Ductos Biliares/cirurgia , Relação Dose-Resposta a Droga , Mucosa Intestinal/metabolismo , Rim/metabolismo , Ligadura , Masculino , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ratos , Ratos Wistar
10.
Life Sci ; 83(5-6): 155-63, 2008 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18602405

RESUMO

Dapsone (DDS) is currently used in the treatment of leprosy, malaria and in infections with Pneumocystis jirovecii and Toxoplasma gondii in AIDS patients. Adverse effects of DDS involve methemoglobinemia and hemolysis and, to a lower extent, liver damage, though the mechanism is poorly characterized. We evaluated the effect of DDS administration to male and female rats (30 mg/kg body wt, twice a day, for 4 days) on liver oxidative stress through assessment of biliary output and liver content of reduced (GSH) and oxidized (GSSG) glutathione, lipid peroxidation, and expression/activities of the main antioxidant enzymes glutathione peroxidase, superoxide dismutase, catalase and glutathione S-transferase. The influence of DDS treatment on expression/activity of the main DDS phase-II-metabolizing system, UDP-glucuronosyltransferase (UGT), was additionally evaluated. The involvement of dapsone hydroxylamine (DDS-NHOH) generation in these processes was estimated by comparing the data in male and female rats since N-hydroxylation of DDS mainly occurs in males. Our studies revealed an increase in the GSSG/GSH biliary output ratio, a sensitive indicator of oxidative stress, and in lipid peroxidation, in male but not in female rats treated with DDS. The activity of all antioxidant enzymes was significantly impaired by DDS treatment also in male rats, whereas UGT activity was not affected in any sex. Taken together, the evidence indicates that DDS induces oxidative stress in rat liver and that N-hydroxylation of DDS was the likely mediator. Impairment in the activity of enzymatic antioxidant systems, also associated with DDS-NHOH formation, constituted a key aggravating factor.


Assuntos
Dapsona/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Feminino , Glucuronosiltransferase/metabolismo , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
11.
World J Gastroenterol ; 14(46): 7068-74, 2008 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-19084913

RESUMO

The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimination of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug resistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, respectively. At transcriptional level, specific nuclear receptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also responsible for alterations occurring in specific liver pathologies. We briefly describe the major Class II NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug transporters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/efeitos dos fármacos , Hepatopatias/tratamento farmacológico , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/farmacologia , Acetaminofen/uso terapêutico , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Receptores Citoplasmáticos e Nucleares/metabolismo , Esteroides/farmacologia , Esteroides/uso terapêutico
12.
Biochem Pharmacol ; 69(3): 531-9, 2005 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15652244

RESUMO

The mechanisms involved in spironolactone (SL, 200 micromol/kg body weight, 3 days i.p.)-induced choleresis were explored in vivo by evaluating bile salt export pump (Bsep)-, multidrug resistance-associated protein 2 (Mrp2)-, and anion exchanger 2 (AE2)-mediated secretory processes in rat liver. Hepatic bile salt metabolism was also analyzed. Total bile flow was significantly increased by SL, primarily due to an increase in bile salt-independent bile flow, whereas bile salt secretion was decreased. SL did not produce any choleresis in TR(-) rats. SL decreased the de novo bile salt synthesis rate in concordance with impaired microsomal cholesterol 7 alpha-hydroxylase activity, thus leading to a decrease in endogenous bile salt pool size. In contrast, the maximum secretory rate of tauroursodeoxycholate as well as expression of Bsep protein detected by Western blotting were not affected. Thus, decreased bile salt availability for canalicular transport rather than transport capability itself likely explains reduced biliary secretion of bile salts. Biliary secretion of glutathione, an endogenous substrate of Mrp2, and HCO(3)(-), the AE2 substrate, were increased by SL, as a main factor explaining enhanced bile salt-independent bile flow. Western blot studies revealed increased expression of Mrp2 in response to SL whereas AE2 content remained unchanged. Enhanced activity and expression of Mrp2 was confirmed by analyzing the excretion rate of dinitrophenyl S-glutathione, an exogenous substrate of Mrp2, in isolated hepatocytes and by immunofluorescence microscopy, respectively. We conclude that SL increased bile flow mainly by increasing the biliary secretion of glutathione species and HCO(3)(-); increased expression of Mrp2 is also involved.


Assuntos
Bile/efeitos dos fármacos , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/fisiologia , Espironolactona/farmacologia , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/fisiologia , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/fisiologia , Antiporters/genética , Antiporters/fisiologia , Bile/metabolismo , Transporte Biológico , Hepatócitos/metabolismo , Masculino , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ratos , Ratos Wistar , Proteínas SLC4A
13.
Toxicol Sci ; 84(1): 4-11, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15590889

RESUMO

The ability of the liver and small intestine for secretion of dinitrophenyl-S-glutathione (DNP-SG), a substrate for multidrug resistance-associated protein 2 (Mrp2), into bile and lumen, respectively, as well as expression of Mrp2 in both tissues, were assessed in 70-75% hepatectomized rats. An in vivo perfused intestinal model was used. A single i.v. dose of 30 micromol/kg b.w. of 1-chloro-2,4-dinitrobenzene (CDNB) was administered and its glutathione conjugate, DNP-SG, was determined by HPLC in bile and intestinal perfusate. One and seven days after hepatectomy, biliary excretion of DNP-SG was decreased by 90 and 50% with respect to shams, respectively, when expressed per mass unit. In contrast, intestinal excretion was increased by 63% or unchanged one and seven days post-hepatectomy, respectively. Tissue content of DNP-SG 5 min after CDNB administration was substantially decreased in liver and significantly increased in intestine, one day post-hepatectomy. Western and immunofluorescence studies revealed preserved levels and localization of Mrp2 in both tissues from hepatectomized animals, irrespective of the time analyzed. In spite of preserved expression of Mrp2, the higher availability of DNP-SG in intestinal cells, likely as a consequence of increased glutathione-S-transferase-mediated conjugation of CDNB, may explain the in vivo findings. Further experiments in isolated hepatocytes suggested that decreased synthesis of DNP-SG rather than altered canalicular transport is responsible for the substantial impairment in excretion of this compound into bile. Taken together, these results indicate that the intestine may partially compensate for liver DNP-SG disposition, particularly shortly after surgery, while liver capability is recovering.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Glutationa/análogos & derivados , Glutationa/metabolismo , Hepatectomia , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Animais , Bile/metabolismo , Transporte Biológico Ativo , Biotransformação , Western Blotting , Densitometria , Dinitroclorobenzeno/metabolismo , Imunofluorescência , Hepatócitos/metabolismo , Técnicas In Vitro , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar
14.
Biochem Pharmacol ; 66(1): 171-7, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12818378

RESUMO

Spironolactone (SL) increases the glucuronidation rate of several compounds. We analyzed the molecular basis of changes occurring in major rat liver UDP-glucuronosyltransferase (UGT) family 1 isoforms and in UGT2B1, a relevant isoform of family 2, in response to SL. UGT activity toward bilirubin, ethynylestradiol and p-nitrophenol was assayed in native and activated microsomes. Protein and mRNA levels were determined by Western and Northern blotting. The lipid composition and physicochemical properties of the microsomal membrane were also analyzed. Glucuronidation rates of bilirubin and ethynylestradiol (at both 3-OH and 17 beta-OH positions), determined in UDP-N-acetylglucosamine-activated membranes, were increased in SL group. Western blot analysis revealed increased levels of UGT1A1 and 1A5 (bilirubin and 3-OH ethynylestradiol conjugation), and 2B1 (17 beta-OH ethynylestradiol conjugation). Northern blot studies suggested transcriptional regulation by the steroid. Analysis of UGT activity in native vs. alamethicin-activated microsomes indicated increased latency, which was not associated to changes in physicochemical properties of the microsomal membrane. p-Nitrophenol glucuronidation rate and mRNA and protein levels of UGT1A6, the main isoform conjugating planar phenols, were not affected by the inducer. The data suggest transcriptional regulation of specific isoforms of hepatic UGT by SL, thus explaining previously reported increases in UGT activity toward selective substrates.


Assuntos
Expressão Gênica/efeitos dos fármacos , Glucuronosiltransferase/metabolismo , Isoenzimas/metabolismo , Fígado/efeitos dos fármacos , Espironolactona/farmacologia , Animais , Bilirrubina/farmacologia , Northern Blotting , Diuréticos/farmacologia , Glucuronosiltransferase/genética , Immunoblotting , Membranas Intracelulares/química , Fígado/enzimologia , Masculino , Fluidez de Membrana/efeitos dos fármacos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Nitrofenóis/farmacologia , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
15.
Biochem Pharmacol ; 68(4): 791-8, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15276087

RESUMO

We evaluated the effect of acetaminophen (APAP), given as a single, 1g/kg body weight dose, on expression and activity of rat liver multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp), two major canalicular drug transporters. The studies were performed 24h after administration of the drug. APAP induced an increase in plasma membrane content of Mrp2 detected by western blotting, consistent with increased detection of the protein at the canalicular level by immunoflourescence microscopy. In vivo biliary excretion of dinitrophenyl-S-glutathione, a well known Mrp2 substrate, was slightly but significantly increased by APAP, agreeing well with upregulation of the transporter. Basal biliary excretion of oxidized glutathione, an endogenous Mrp2 substrate, was also increased by APAP, likely indicating increased hepatic synthesis as a result of APAP-induced oxidative stress followed by accelerated canalicular secretion mediated by Mrp2. APAP also increased the expression of P-gp detected by western blotting and immunofluorescence microscopy as well as the in vivo biliary secretory rate of digoxin, a model P-gp substrate. Because specific APAP-conjugated metabolites are Mrp2 substrates, we postulate that induction of Mrp2 by APAP may represent an adaptive mechanism to accelerate liver disposition of the drug. In addition, increased Mrp2-mediated elimination of oxidized glutathione may be essential in maintaining the redox equilibrium in the hepatocyte under conditions of APAP-induced oxidative stress.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Acetaminofen/farmacologia , Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico/efeitos dos fármacos , Fígado/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Ratos , Ratos Wistar
16.
Ann Hepatol ; 3(1): 11-7, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15118574

RESUMO

Treatment of experimental animals with prototypical enzyme inducers represents a useful tool to characterize the role of different isozymes in drug metabolism and to improve our knowledge on factors regulating their synthesis at the transcriptional level. The effect of model enzyme inducers on phase II (conjugating) enzyme families, including UDP-glucuronosyltransferase's and glutathione-S-transferase's, has been well characterized in rodent liver. More recently, the effect of inducers on the expression of canalicular multidrug resistance-associated protein 2 (Mrp2) has been focused upon. The identification of a number of conjugated drugs as Mrp2 substrates suggests that both the conjugation and transport systems act coordinately to improve drug elimination from the body. We provide evidence about circumstances resulting in the simultaneous upregulation of phase II enzymes and Mrp2 in hepatic and extrahepatic tissues, most likely involving activation of common nuclear receptors (e.g. FXR, PXR). Additionally, we provide an analysis of examples of drug-induced toxicity leading to the simultaneous downregulation of both systems. Potential therapeutic strategies based on the modulation of expression of these systems are also briefly commented upon.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Transferases/metabolismo , Xenobióticos/farmacocinética , Animais , Biotransformação , Colestase/metabolismo , Indução Enzimática , Humanos , Fígado/enzimologia , Proteína 2 Associada à Farmacorresistência Múltipla , Receptores Citoplasmáticos e Nucleares/metabolismo
17.
Toxicology ; 320: 46-55, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24685904

RESUMO

ABC transporters including MRP2, MDR1 and BCRP play a major role in tissue defense. Epidemiological and experimental studies suggest a cytoprotective role of estrogens in intestine, though the mechanism remains poorly understood. We evaluated whether pharmacologic concentrations of ethynylestradiol (EE, 0.05pM to 5nM), or concentrations of genistein (GNT) associated with soy ingestion (0.1-10µM), affect the expression and activity of multidrug resistance proteins MRP2, MDR1 and BCRP using Caco-2 cells, an in vitro model of intestinal epithelium. We found that incubation with 5pM EE and 1µM GNT for 48h increased expression and activity of both MRP2 and MDR1. Estrogens did not affect expression of BCRP protein at any concentration studied. Irrespective of the estrogen tested, up-regulation of MDR1 and MRP2 protein was accompanied by increased levels of MDR1 mRNA, whereas MRP2 mRNA remained unchanged. Cytotoxicity assays demonstrated association of MRP2 and MDR1 up-regulation with increased resistance to cell death induced by 1-chloro-2,4-dinitrobenzene, an MRP2 substrate precursor, and by paraquat, an MDR1 substrate. Experiments using an estrogen receptor (ER) antagonist implicate ER participation in MRP2 and MDR1 regulation. GNT but not EE increased the expression of ERß, the most abundant form in human intestine and in Caco-2 cells, which could lead in turn to increased sensitivity to estrogens. We conclude that specific concentrations of estrogens can confer resistance against cytotoxicity in Caco-2 cells, due in part to positive modulation of ABC transporters involved in extrusion of their toxic substrates. Although extrapolation of these results to the in vivo situation must be cautiously done, the data could explain tentatively the cytoprotective role of estrogens against chemical injury in intestine.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/efeitos dos fármacos , Etinilestradiol/farmacologia , Genisteína/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Neoplasias/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Dinitroclorobenzeno/toxicidade , Relação Dose-Resposta a Droga , Antagonistas de Estrogênios/farmacologia , Receptor beta de Estrogênio/genética , Etinilestradiol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Genisteína/administração & dosagem , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Proteína 2 Associada à Farmacorresistência Múltipla , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Paraquat/toxicidade , RNA Mensageiro/metabolismo , Glycine max/química , Regulação para Cima/efeitos dos fármacos , Xenobióticos/toxicidade
18.
Compr Physiol ; 3(4): 1721-40, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24265243

RESUMO

The human body is constantly exposed to many xenobiotics including environmental pollutants, food additives, therapeutic drugs, etc. The liver is considered the primary site for drug metabolism and elimination pathways, consisting in uptake, phase I and II reactions, and efflux processes, usually acting in this same order. Modulation of biotransformation and disposition of drugs of clinical application has important therapeutic and toxicological implications. We here provide a compilation and analysis of relevant, more recent literature reporting hormonal regulation of hepatic drug biotransformation and transport systems. We provide additional information on the effect of hormones that tentatively explain differences between sexes. A brief discussion on discrepancies between experimental models and species, as well as a link between gender-related differences and the hormonal mechanism explaining such differences, is also presented. Finally, we include a comment on the pathophysiological, toxicological, and pharmacological relevance of these regulations.


Assuntos
Biotransformação , Hormônios Gonadais/metabolismo , Bombas de Íon/metabolismo , Fígado/metabolismo , Animais , Feminino , Humanos , Masculino , Caracteres Sexuais
19.
PLoS Negl Trop Dis ; 6(12): e1951, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23272261

RESUMO

BACKGROUND: Benznidazole (BZL) is the only antichagasic drug available in most endemic countries. Its effect on the expression and activity of drug-metabolizing and transporter proteins has not been studied yet. METHODOLOGY/PRINCIPAL FINDINGS: Expression and activity of P-glycoprotein (P-gp), Multidrug resistance-associated protein 2 (MRP2), Cytochrome P450 3A4 (CYP3A4), and Glutathione S-transferase (GST) were evaluated in HepG2 cells after treatment with BZL. Expression was estimated by immunoblotting and real time PCR. P-gp and MRP2 activities were estimated using model substrates rhodamine 123 and dinitrophenyl-S-glutathione (DNP-SG), respectively. CYP3A4 and GST activities were evaluated through their abilities to convert proluciferin into luciferin and 1-chloro-2,4-dinitrobenzene into DNP-SG, respectively. BZL (200 µM) increased the expression (protein and mRNA) of P-gp, MRP2, CYP3A4, and GSTπ class. A concomitant enhancement of activity was observed for all these proteins, except for CYP3A4, which exhibited a decreased activity. To elucidate if pregnane X receptor (PXR) mediates BZL response, its expression was knocked down with a specific siRNA. In this condition, the effect of BZL on P-gp, MRP2, CYP3A4, and GSTπ protein up-regulation was completely abolished. Consistent with this, BZL was able to activate PXR, as detected by reporter gene assay. Additional studies, using transporter inhibitors and P-gp-knock down cells, demonstrated that P-gp is involved in BZL extrusion. Pre-treatment of HepG2 cells with BZL increased its own efflux, as a consequence of P-gp up-regulation. CONCLUSIONS/SIGNIFICANCE: Modifications in the activity of biotransformation and transport systems by BZL may alter the pharmacokinetics and efficiency of drugs that are substrates of these systems, including BZL itself.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Antiprotozoários/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Nitroimidazóis/metabolismo , Receptores de Esteroides/metabolismo , Biotransformação , Western Blotting , Perfilação da Expressão Gênica , Células Hep G2 , Humanos , Redes e Vias Metabólicas/genética , Receptor de Pregnano X , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima
20.
Biochem Pharmacol ; 77(10): 1621-8, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19426699

RESUMO

Development of resistance to toxic effects of acetaminophen (APAP) was reported in rodents and humans, though the mechanism is only partially understood. We examined in rats the effect of administration with subtoxic daily doses (0.2, 0.3, and 0.6g/kg, i.p.) of APAP on enterohepatic recirculation and liver toxicity of a subsequent i.p. toxic dose of 1g/kg, given 24h after APAP pre-treatment. APAP and its major metabolite APAP-glucuronide (APAP-Glu) were determined in bile, urine, serum and liver homogenate. APAP pre-treatment was not toxic, as determined by serum markers of liver damage and neither induced oxidative stress as demonstrated by assessment of ROS generation in liver or glutathione species in liver and bile. APAP pre-treatment induced a partial shift from biliary to urinary elimination of APAP-Glu after administration with the toxic dose, and decreased hepatic content and increased serum content of this conjugate, consistent with a marked up-regulation of its basolateral transporter Mrp3 relative to apical Mrp2. Preferential secretion of APAP-glu into blood decreased enterohepatic recirculation of APAP, thus attenuating liver exposition to the intact drug, as demonstrated 6h after administration with the toxic dose. The beneficial effect of interfering the enterohepatic recirculation was alternatively tested in animals receiving activated charcoal by gavage to adsorb APAP of biliary origin. The data indicated decreased liver APAP content and glutathione consumption. We conclude that selective up-regulation of Mrp3 expression by APAP pre-treatment may contribute to development of resistance to APAP hepatotoxicity, at least in part by decreasing its enterohepatic recirculation.


Assuntos
Acetaminofen/análogos & derivados , Analgésicos não Narcóticos/farmacocinética , Analgésicos não Narcóticos/toxicidade , Fígado/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/biossíntese , Acetaminofen/administração & dosagem , Acetaminofen/farmacocinética , Acetaminofen/toxicidade , Analgésicos não Narcóticos/administração & dosagem , Animais , Western Blotting , Carvão Vegetal/administração & dosagem , Relação Dose-Resposta a Droga , Esquema de Medicação , Glutationa/metabolismo , Injeções Intraperitoneais , Fígado/metabolismo , Fígado/patologia , Masculino , Microscopia de Fluorescência , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA