Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 38(9)2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877095

RESUMO

SecA belongs to the large class of ATPases that use the energy of ATP hydrolysis to perform mechanical work resulting in protein translocation across membranes, protein degradation, and unfolding. SecA translocates polypeptides through the SecY membrane channel during protein secretion in bacteria, but how it achieves directed peptide movement is unclear. Here, we use single-molecule FRET to derive a model that couples ATP hydrolysis-dependent conformational changes of SecA with protein translocation. Upon ATP binding, the two-helix finger of SecA moves toward the SecY channel, pushing a segment of the polypeptide into the channel. The finger retracts during ATP hydrolysis, while the clamp domain of SecA tightens around the polypeptide, preserving progress of translocation. The clamp opens after phosphate release and allows passive sliding of the polypeptide chain through the SecA-SecY complex until the next ATP binding event. This power-stroke mechanism may be used by other ATPases that move polypeptides.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Peptídeos/metabolismo , Proteínas SecA/metabolismo , Proteínas de Escherichia coli/química , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC/química , Canais de Translocação SEC/metabolismo , Proteínas SecA/química
2.
EMBO Rep ; 21(11): e50905, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32969592

RESUMO

Bacterial secretory proteins are translocated post-translationally by the SecA ATPase through the protein-conducting SecY channel in the plasma membrane. During the ATP hydrolysis cycle, SecA undergoes large conformational changes of its two-helix finger and clamp domains, but how these changes result in polypeptide movement is unclear. Here, we use a reconstituted purified system and protease protection assays to show that ATP binding to SecA results in a segment of the translocation substrate being pushed into the channel. This motion is prevented by mutation of conserved residues at the finger's tip. Mutation of SecA's clamp causes backsliding of the substrate in the ATP-bound state. Together, these data support a power stroke model of translocation in which, upon ATP binding, the two-helix finger pushes the substrate into the channel, where it is held by the clamp until nucleotide hydrolysis has occurred.


Assuntos
Adenosina Trifosfatases , Proteínas de Escherichia coli , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Modelos Moleculares , Peptídeo Hidrolases , Peptídeos/metabolismo , Transporte Proteico , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Proteínas SecA
3.
Nat Commun ; 10(1): 2872, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31253804

RESUMO

The Sec61/SecY channel allows the translocation of many proteins across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. In bacteria, most secretory proteins are transported post-translationally through the SecY channel by the SecA ATPase. How a polypeptide is moved through the SecA-SecY complex is poorly understood, as structural information is lacking. Here, we report an electron cryo-microscopy (cryo-EM) structure of a translocating SecA-SecY complex in a lipid environment. The translocating polypeptide chain can be traced through both SecA and SecY. In the captured transition state of ATP hydrolysis, SecA's two-helix finger is close to the polypeptide, while SecA's clamp interacts with the polypeptide in a sequence-independent manner by inducing a short ß-strand. Taking into account previous biochemical and biophysical data, our structure is consistent with a model in which the two-helix finger and clamp cooperate during the ATPase cycle to move a polypeptide through the channel.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Canais de Translocação SEC/metabolismo , Adenosina Trifosfatases/genética , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Microscopia Crioeletrônica , Cristalização , Escherichia coli , Geobacillus/metabolismo , Modelos Moleculares , Conformação Proteica , Transporte Proteico , Canais de Translocação SEC/genética , Proteínas SecA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA