Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2207978120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487086

RESUMO

Loss-of-function mutations in the KCNA1(Kv1.1) gene cause episodic ataxia type 1 (EA1), a neurological disease characterized by cerebellar dysfunction, ataxic attacks, persistent myokymia with painful cramps in skeletal muscles, and epilepsy. Precision medicine for EA1 treatment is currently unfeasible, as no drug that can enhance the activity of Kv1.1-containing channels and offset the functional defects caused by KCNA1 mutations has been clinically approved. Here, we uncovered that niflumic acid (NFA), a currently prescribed analgesic and anti-inflammatory drug with an excellent safety profile in the clinic, potentiates the activity of Kv1.1 channels. NFA increased Kv1.1 current amplitudes by enhancing the channel open probability, causing a hyperpolarizing shift in the voltage dependence of both channel opening and gating charge movement, slowing the OFF-gating current decay. NFA exerted similar actions on both homomeric Kv1.2 and heteromeric Kv1.1/Kv1.2 channels, which are formed in most brain structures. We show that through its potentiating action, NFA mitigated the EA1 mutation-induced functional defects in Kv1.1 and restored cerebellar synaptic transmission, Purkinje cell availability, and precision of firing. In addition, NFA ameliorated the motor performance of a knock-in mouse model of EA1 and restored the neuromuscular transmission and climbing ability in Shaker (Kv1.1) mutant Drosophila melanogaster flies (Sh5). By virtue of its multiple actions, NFA has strong potential as an efficacious single-molecule-based therapeutic agent for EA1 and serves as a valuable model for drug discovery.


Assuntos
Mioquimia , Animais , Camundongos , Drosophila melanogaster , Ataxia , Drosophila , Canal de Potássio Kv1.2
2.
Molecules ; 26(5)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799979

RESUMO

The identification of compounds which protect the double-membrane of mitochondrial organelles from disruption by toxic confomers of amyloid proteins may offer a therapeutic strategy to combat human neurodegenerative diseases. Here, we exploited an extract from the marine brown seaweed Padina pavonica (PPE) as a vital source of natural bioactive compounds to protect mitochondrial membranes against insult by oligomeric aggregates of the amyloidogenic proteins amyloid-ß (Aß), α-synuclein (α-syn) and tau, which are currently considered to be major targets for drug discovery in Alzheimer's disease (AD) and Parkinson's disease (PD). We show that PPE manifested a significant inhibitory effect against swelling of isolated mitochondria exposed to the amyloid oligomers, and attenuated the release of cytochrome c from the mitochondria. Using cardiolipin-enriched synthetic lipid membranes, we also show that dye leakage from fluorophore-loaded vesicles and formation of channel-like pores in planar bilayer membranes are largely prevented by incubating the oligomeric aggregates with PPE. Lastly, we demonstrate that PPE curtails the ability of Aß42 and α-syn monomers to self-assemble into larger ß-aggregate structures, as well as potently disrupts their respective amyloid fibrils. In conclusion, the mito-protective and anti-aggregator biological activities of Padina pavonica extract may be of therapeutic value in neurodegenerative proteinopathies, such as AD and PD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Membranas Mitocondriais/efeitos dos fármacos , Fragmentos de Peptídeos/toxicidade , Phaeophyceae/química , alfa-Sinucleína/toxicidade , Peptídeos beta-Amiloides/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Membranas Mitocondriais/patologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/metabolismo , Alga Marinha/química , alfa-Sinucleína/metabolismo
3.
Biochem Soc Trans ; 46(2): 329-341, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29523774

RESUMO

Gemin3, also known as DDX20 or DP103, is a DEAD-box RNA helicase which is involved in more than one cellular process. Though RNA unwinding has been determined in vitro, it is surprisingly not required for all of its activities in cellular metabolism. Gemin3 is an essential gene, present in Amoeba and Metazoa. The highly conserved N-terminus hosts the helicase core, formed of the helicase- and DEAD-domains, which, based on crystal structure determination, have key roles in RNA binding. The C-terminus of Gemin3 is highly divergent between species and serves as the interaction site for several accessory factors that could recruit Gemin3 to its target substrates and/or modulate its function. This review article focuses on the known roles of Gemin3, first as a core member of the survival motor neuron (SMN) complex, in small nuclear ribonucleoprotein biogenesis. Although mechanistic details are lacking, a critical function for Gemin3 in this pathway is supported by numerous in vitro and in vivo studies. Gene expression activities of Gemin3 are next underscored, mainly messenger ribonucleoprotein trafficking, gene silencing via microRNA processing, and transcriptional regulation. The involvement of Gemin3 in abnormal cell signal transduction pathways involving p53 and NF-κB is also highlighted. Finally, the clinical implications of Gemin3 deregulation are discussed including links to spinal muscular atrophy, poliomyelitis, amyotrophic lateral sclerosis, and cancer. Impressive progress made over the past two decades since the discovery of Gemin3 bodes well for further work that refines the mechanism(s) underpinning its multiple activities.


Assuntos
Proteína DEAD-box 20/metabolismo , RNA Helicases DEAD-box/metabolismo , Animais , Carcinogênese , Proteína DEAD-box 20/genética , RNA Helicases DEAD-box/genética , Expressão Gênica , Inativação Gênica , Humanos , NF-kappa B/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Transdução de Sinais , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/metabolismo
4.
Neurobiol Dis ; 94: 245-58, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27388936

RESUMO

The neuromuscular disorder, spinal muscular atrophy (SMA), results from insufficient levels of the survival motor neuron (SMN) protein. Together with Gemins 2-8 and Unrip, SMN forms the large macromolecular SMN-Gemins complex, which is known to be indispensable for chaperoning the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). It remains unclear whether disruption of this function is responsible for the selective neuromuscular degeneration in SMA. In the present study, we first show that loss of wmd, the Drosophila Unrip orthologue, has a negative impact on the motor system. However, due to lack of a functional relationship between wmd/Unrip and Gemin3, it is likely that Unrip joined the SMN-Gemins complex only recently in evolution. Second, we uncover that disruption of either Tgs1 or pICln, two cardinal players in snRNP biogenesis, results in viability and motor phenotypes that closely resemble those previously uncovered on loss of the constituent members of the SMN-Gemins complex. Interestingly, overexpression of both factors leads to motor dysfunction in Drosophila, a situation analogous to that of Gemin2. Toxicity is conserved in the yeast S. pombe where pICln overexpression induces a surplus of Sm proteins in the cytoplasm, indicating that a block in snRNP biogenesis is partly responsible for this phenotype. Importantly, we show a strong functional relationship and a physical interaction between Gemin3 and either Tgs1 or pICln. We propose that snRNP biogenesis is the pathway connecting the SMN-Gemins complex to a functional neuromuscular system, and its disturbance most likely leads to the motor dysfunction that is typical in SMA.


Assuntos
Proteínas de Drosophila/metabolismo , Neurônios Motores/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , Citoplasma/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Fenótipo
5.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166818, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37495086

RESUMO

SARS-CoV-2, the virus responsible for the coronavirus disease of 2019 (COVID-19), gains cellular entry via interaction with the angiotensin-converting enzyme 2 (ACE2) receptor of host cells. Although SARS-CoV-2 mainly targets the respiratory system, the neuromuscular system also appears to be affected in a large percentage of patients with acute or chronic COVID-19. The cause of the well-described neuromuscular manifestations resulting from SARS-CoV-2 infection remains unresolved. These may result from the neuromuscular-invasive capacity of the virus leading to direct injury. Alternatively, they may be the consequence of ACE2 inactivation either due to viral infection, ACE2 autoantibodies or both. Here, we made use of the Drosophila model to investigate whether ACE2 downregulation is sufficient to induce neuromuscular phenotypes. We show that moderate gene silencing of ACE2 orthologues Ance or Ance3 diminished survival on exposure to thermal stress only upon induction of neuromuscular fatigue driven by increased physical activity. A strong knockdown of Ance or Ance3 directed to muscle reduced or abolished adult viability and caused obvious motoric deficits including reduced locomotion and impaired flight capacity. Selective knockdown of Ance and Ance3 in neurons caused wing defects and an age-dependent decline in motor behaviour, respectively, in adult flies. Interestingly, RNA sequencing allowed us to discover several differentially spliced genes that are required for synaptic function downstream of Ance or Ance3 depletion. Our findings are therefore supportive of the notion that loss of a RAS-independent function for ACE2 contributes to the neuromuscular manifestations associated with SARS-CoV-2 infection.


Assuntos
COVID-19 , Animais , COVID-19/complicações , COVID-19/genética , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Peptidil Dipeptidase A/genética , Drosophila
6.
Neurobiol Aging ; 126: 67-76, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36944290

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neuromuscular disease mostly resulting from a complex interplay between genetic, environmental and lifestyle factors. Common genetic variants in the Sec1 Family Domain Containing 1 (SCFD1) gene have been associated with increased ALS risk in the most extensive genome-wide association study (GWAS). SCFD1 was also identified as a top-most significant expression Quantitative Trait Locus (eQTL) for ALS. Whether loss of SCFD1 function directly contributes to motor system dysfunction remains unresolved. Here we show that moderate gene silencing of Slh, the Drosophila orthologue of SCFD1, is sufficient to cause climbing and flight defects in adult flies. A more severe knockdown induced a significant reduction in larval mobility and profound neuromuscular junction (NMJ) deficits prior to death before metamorphosis. RNA-seq revealed downregulation of genes encoding chaperones that mediate protein folding downstream of Slh ablation. Our findings support the notion that loss of SCFD1 function is a meaningful contributor to ALS and disease predisposition may result from erosion of the mechanisms protecting against misfolding and protein aggregation.


Assuntos
Esclerose Lateral Amiotrófica , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Drosophila/genética , Estudo de Associação Genômica Ampla , Fatores de Risco
7.
Front Neurosci ; 17: 1164251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360176

RESUMO

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neuromuscular disease that has a strong genetic component. Deleterious variants in the DCTN1 gene are known to be a cause of ALS in diverse populations. DCTN1 encodes the p150 subunit of the molecular motor dynactin which is a key player in the bidirectional transport of cargos within cells. Whether DCTN1 mutations lead to the disease through either a gain or loss of function mechanism remains unresolved. Moreover, the contribution of non-neuronal cell types, especially muscle tissue, to ALS phenotypes in DCTN1 carriers is unknown. Here we show that gene silencing of Dctn1, the Drosophila main orthologue of DCTN1, either in neurons or muscles is sufficient to cause climbing and flight defects in adult flies. We also identify Dred, a protein with high homology to Drosophila Dctn1 and human DCTN1, that on loss of function also leads to motoric impairments. A global reduction of Dctn1 induced a significant reduction in the mobility of larvae and neuromuscular junction (NMJ) deficits prior to death at the pupal stage. RNA-seq and transcriptome profiling revealed splicing alterations in genes required for synapse organisation and function, which may explain the observed motor dysfunction and synaptic defects downstream of Dctn1 ablation. Our findings support the possibility that loss of DCTN1 function can lead to ALS and underscore an important requirement for DCTN1 in muscle in addition to neurons.

8.
Neurobiol Aging ; 123: 200-207, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549973

RESUMO

Genetic risk for amyotrophic lateral sclerosis (ALS) is highly elevated in genetic isolates, like the island population of Malta in the south of Europe, providing a unique opportunity to investigate the genetics of this disease. Here we characterize the clinical phenotype and genetic profile of the largest series of Maltese ALS patients to date identified throughout a 5-year window. Cases and controls underwent neuromuscular assessment and analysis of rare variants in ALS causative or risk genes following whole-genome sequencing. Potentially damaging variants or repeat expansions were identified in more than 45% of all patients. The most commonly affected genes were ALS2, DAO, SETX and SPG11, an infrequent cause of ALS in Europeans. We also confirmed a significant association between ATXN1 intermediate repeats and increased disease risk. Damaging variants in major ALS genes C9orf72, SOD1, TARDBP and FUS were however either absent or rare in Maltese ALS patients. Overall, our study underscores a population that is an outlier within Europe and one that represents a high percentage of genetically explained cases.


Assuntos
Esclerose Lateral Amiotrófica , Predisposição Genética para Doença , Humanos , Predisposição Genética para Doença/genética , Estudos de Associação Genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/epidemiologia , Malta/epidemiologia , Fenótipo , Proteína C9orf72/genética , Superóxido Dismutase-1/genética , Mutação/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética , Proteínas/genética
9.
Bioessays ; 32(12): 1077-89, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20954180

RESUMO

Gemins 2-8 and Unr-interacting protein (UNRIP) are intimate partners of the survival motor neuron (SMN) protein, which is the determining factor for the neuromuscular disorder spinal muscular atrophy (SMA). The most documented role of SMN, Gemins and UNRIP occurs within the large macromolecular SMN complex and involves the cytoplasmic assembly of spliceosomal uridine-rich small nuclear ribonucleoproteins (UsnRNPs), a housekeeping process critical in all cells. Several reports detailing alternative functions for SMN in either motor neurons or skeletal muscles may, however, hold the answer to the extreme neuromuscular tissue specificity observed in SMA. Recent discoveries indicate that collaboration between SMN and Gemins also extends to these non-canonical functions, hence raising the possibility that mutations in Gemin genes may be the cause of unlinked neuromuscular hereditary syndromes. This review evaluates the functions of Gemins and UNRIP inside the SMN complex and discusses whether these less notorious SMN complex members are capable of acting independently of SMN.


Assuntos
Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Animais , Corpos Enovelados/fisiologia , Humanos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Proteínas do Complexo SMN/genética , Spliceossomos
10.
Neuroscience ; 491: 32-42, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35314252

RESUMO

Increasing evidence points to the involvement of cell types other than motor neurons in both amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA), the predominant motor neuron disease in adults and infants, respectively. The contribution of glia to ALS pathophysiology is well documented. Studies have since focused on evaluating the contribution of glia in SMA. Here, we made use of the Drosophila model to ask whether the survival motor neuron (Smn) protein, the causative factor for SMA, is required selectively in glia. We show that the specific loss of Smn function in glia during development reduced survival to adulthood but did not affect motoric performance or neuromuscular junction (NMJ) morphology in flies. In contrast, gain rather than loss of ALS-linked TDP-43, FUS or C9orf72 function in glia induced significant defects in motor behaviour in addition to reduced survival. Furthermore, glia-specific gain of TDP-43 function caused both NMJ defects and muscle atrophy. Smn together with Gemins 2-8 and Unrip, form the Smn complex which is indispensable for the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs). We show that glial-selective perturbation of Smn complex components or disruption of key snRNP biogenesis factors pICln and Tgs1, induce deleterious effects on adult fly viability but, similar to Smn reduction, had no negative effect on neuromuscular function. Our findings suggest that the role of Smn in snRNP biogenesis as part of the Smn complex is required in glia for the survival of the organism, underscoring the importance of glial cells in SMA disease formation.


Assuntos
Atrofia Muscular Espinal , Envelhecimento , Animais , Proteínas de Ligação a DNA/metabolismo , Drosophila/metabolismo , Neurônios Motores/fisiologia , Neuroglia/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
11.
Eur J Hum Genet ; 30(7): 856-859, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34616013

RESUMO

Amyotrophic lateral sclerosis (ALS) is frequently caused by mutations in the SOD1 gene. Here, we report the first SOD1 variant in Malta, an archipelago of three inhabited islands in southern Europe. We describe a patient with a sporadic form of ALS living on the island of Gozo in which the heterozygous SOD1 c.272A>C; p.(Asp91Ala) variant was detected. The patient had a late onset (79 years), sensory impairments and rapid disease progression culminating in respiratory failure. ALS has not yet developed in any of the three additional family members in which the D91A variant was identified. None of the healthy controls from the Maltese population were found to carry this variant. This report underscores the high prevalence of the D91A variant in Europe, despite the presence of a North-South gradient in its frequency, and confirms that this variant can be associated with dominant cases in Mediterranean countries.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/genética , Europa (Continente) , Heterozigoto , Humanos , Mutação , Superóxido Dismutase-1/genética
12.
Cell Biol Int ; 35(12): 1233-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21627586

RESUMO

Gems or 'Gemini of Cajal bodies' are spherical nuclear aggregates of SMN (survival of motor neurons) complexes that frequently overlap Cajal bodies. Although described and characterized in mammalian tissues, gems have not been reported in invertebrates. Stimulation of gem formation in the fruitfly Drosophila melanogaster was investigated through the constitutive overexpression of a fluorescently tagged transgene of a DEAD-box SMN complex member, Gemin3, in wild-type tissues. Although expression was predominantly cytoplasmic in the larval brain cells, Gemin3 was found enriched in multiple discrete bright foci in the nuclei of several tissues including epidermis, muscle and gut. Similar to their mammalian counterparts, Drosophila gems contained endogenous SMN and at times overlapped with Cajal bodies. These findings support the hypothesis that gems are storage sites for excess nuclear SMN complexes and their frequent association with Cajal bodies might imply recruitment for nuclear ribonucleoprotein assembly reactions.


Assuntos
RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Núcleo Celular/metabolismo , Corpos Enovelados/metabolismo , Citoplasma/metabolismo , Imunofluorescência , Larva/metabolismo , Proteínas do Complexo SMN/metabolismo
13.
Exp Cell Res ; 316(14): 2354-64, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20452345

RESUMO

Uridine-rich small nuclear ribonucleoproteins (U snRNPs) play key roles in pre-mRNA processing in the nucleus. The assembly of most U snRNPs takes place in the cytoplasm and is facilitated by the survival motor neuron (SMN) complex. Discrete cytoplasmic RNA granules called U bodies have been proposed to be specific sites for snRNP assembly because they contain U snRNPs and SMN. U bodies invariably associate with P bodies, which are involved in mRNA decay and translational control. However, it remains unknown whether other SMN complex proteins also localise to U bodies. In Drosophila there are four SMN complex proteins, namely SMN, Gemin2/CG10419, Gemin3 and Gemin5/Rigor mortis. Drosophila Gemin3 was originally identified as the Drosophila orthologue of human and yeast Dhh1, a component of P bodies. Through an in silico analysis of the DEAD-box RNA helicases we confirmed that Gemin3 is the bona fide Drosophila orthologue of vertebrate Gemin3 whereas the Drosophila orthologue of Dhh1 is Me31B. We then made use of the Drosophila egg chamber as a model system to study the subcellular distribution of the Gemin proteins as well as Me31B. Our cytological investigations show that Gemin2, Gemin3 and Gemin5 colocalise with SMN in U bodies. Although they are excluded from P bodies, as components of U bodies, Gemin2, Gemin3 and Gemin5 are consistently found associated with P bodies, wherein Me31B resides. In addition to a role in snRNP biogenesis, SMN complexes residing in U bodies may also be involved in mRNP assembly and/or transport.


Assuntos
Drosophila melanogaster/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN/metabolismo , Animais , RNA Helicases DEAD-box/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/classificação , Feminino , Humanos , Filogenia
14.
PLoS Genet ; 4(11): e1000265, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19023405

RESUMO

The survival motor neuron (SMN) protein, the determining factor for spinal muscular atrophy (SMA), is complexed with a group of proteins in human cells. Gemin3 is the only RNA helicase in the SMN complex. Here, we report the identification of Drosophila melanogaster Gemin3 and investigate its function in vivo. Like in vertebrates, Gemin3 physically interacts with SMN in Drosophila. Loss of function of gemin3 results in lethality at larval and/or prepupal stages. Before they die, gemin3 mutant larvae exhibit declined mobility and expanded neuromuscular junctions. Expression of a dominant-negative transgene and knockdown of Gemin3 in mesoderm cause lethality. A less severe Gemin3 disruption in developing muscles leads to flightless adults and flight muscle degeneration. Our findings suggest that Drosophila Gemin3 is required for larval development and motor function.


Assuntos
Proteína DEAD-box 20/fisiologia , RNA Helicases DEAD-box/fisiologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Neurônios Motores/enzimologia , Animais , Proteína DEAD-box 20/genética , RNA Helicases DEAD-box/genética , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Humanos , Larva/metabolismo , Camundongos , Mutação , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo , Transgenes
15.
Heliyon ; 7(12): e08555, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34901515

RESUMO

Angiotensin-converting enzyme (ACE) and its homologue ACE2 are key regulators of the renin-angiotensin system and thereby cardiovascular function through their zinc-metallopeptidase activity on vasoactive peptides. ACE2 also serves as the receptor for the cellular entry of various coronaviruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the coronavirus disease 2019 (COVID-19). The unprecedented scale of the COVID-19 pandemic has spurred the use of mammalian models to investigate the SARS-ACE2 relationship and knowledge gained from such research has accelerated development of vaccines and therapeutics. Recent studies have just started to underscore the utility of the fruit fly Drosophila melanogaster as a model system to study virus-host interactions and pathogenicity. Notably, the remarkable existence of catalytically functional ACE and ACE2 orthologues in Drosophila, discovered more than two decades ago, provides a unique opportunity for further developing this model organism to better understand COVID-19 in addition to identifying coronavirus preventative and therapeutic interventions targeting ACE2. Here, we review the studies that revealed crucial insights on the biochemistry and physiology of Ance and Acer, two out of the six Drosophila ACE family members with the greatest homology to human ACE and ACE2. We highlight shared in vivo functions outside of the renin-angiotensin system, which is not conserved in flies. Importantly, we identify knowledge gaps that can be filled by further research and outline ways that can raise Drosophila to a powerful model system to combat SARS-CoV-2 and its threatening vaccine-evading variants.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33821701

RESUMO

Objective: Amyotrophic lateral sclerosis (ALS) is a mostly sporadic neurodegenerative disease. The role of environmental factors has been extensively investigated but associations remain controversial. Considering that a substantial proportion of adult life is spent at work, identifying occupations and work-related exposures is considered an effective way to detect factors that increase ALS risk. This process may be further facilitated in population isolates due to environmental and genetic homogeneity. Our study investigated occupations and occupational exposures potentially associated with ALS risk in the isolated island population of Malta, using a case-control study design. Methods: Patients with ALS and randomly identified matched controls (1:1) were recruited throughout a four-year window, from 2017 through 2020. Data on educational level, residence, main occupation, smoking, and alcohol history were collected. Results: We found that compared to controls (44.4%), a higher percentage (73.7%) of ALS patients reported a blue-collar job as their main occupation (OR 2.04, 95% CI 1.2-3.72; p = 0.0072). Through regression analysis, craft and related trades occupations such as carpentry and construction (ISCO-08 major group 7), were found to be positively associated with ALS, with patients in this occupational category found to be more prone to develop bulbar-onset ALS (p = 0.0297). Overall, patients with ALS reported a significantly higher exposure to work-related strenuous physical activity (OR 2.35, 95% CI 1.53-3.59; p = 0.0002). Conclusion: Our findings suggest that manual workers particularly those working in the carpentry and construction industries have an increased ALS risk, possibly due to a history of intense or sustained physical activity.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Exposição Ocupacional , Adulto , Esclerose Lateral Amiotrófica/epidemiologia , Estudos de Casos e Controles , Humanos , Malta , Exposição Ocupacional/efeitos adversos , Ocupações , Fatores de Risco
17.
Eur J Hum Genet ; 29(4): 604-614, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414559

RESUMO

Genetic isolates are compelling tools for mapping genes of inherited disorders. The archipelago of Malta, a sovereign microstate in the south of Europe is home to a geographically and culturally isolated population. Here, we investigate the epidemiology and genetic profile of Maltese patients with amyotrophic lateral sclerosis (ALS), identified throughout a 2-year window. Cases were largely male (66.7%) with a predominant spinal onset of symptoms (70.8%). Disease onset occurred around mid-age (median age: 64 years, men; 59.5 years, female); 12.5% had familial ALS (fALS). Annual incidence rate was 2.48 (95% CI 1.59-3.68) per 100,000 person-years. Male-to-female incidence ratio was 1.93:1. Prevalence was 3.44 (95% CI 2.01-5.52) cases per 100,000 inhabitants on 31st December 2018. Whole-genome sequencing allowed us to determine rare DNA variants that change the protein-coding sequence of ALS-associated genes. Interestingly, the Maltese ALS patient cohort was found to be negative for deleterious variants in C9orf72, SOD1, TARDBP or FUS genes, which are the most commonly mutated ALS genes globally. Nonetheless, ALS-associated repeat expansions were identified in ATXN2 and NIPA1. Variants predicted to be damaging were also detected in ALS2, DAO, DCTN1, ERBB4, SETX, SCFD1 and SPG11. A total of 40% of patients with sporadic ALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene, whilst the genetic cause of two thirds of fALS cases could not be pinpointed to known ALS genes or risk loci. This warrants further studies to elucidate novel genes that cause ALS in this unique population isolate.


Assuntos
Esclerose Lateral Amiotrófica/genética , Loci Gênicos , Mutação , Isolamento Reprodutivo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Feminino , Frequência do Gene , Humanos , Masculino , Malta , Pessoa de Meia-Idade , Prevalência , Fatores Sexuais
18.
Sci Rep ; 10(1): 17733, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082392

RESUMO

Studies on the amyloidogenic N-terminal domain of the E. coli HypF protein (HypF-N) have contributed significantly to a detailed understanding of the pathogenic mechanisms in neurodegenerative diseases characterised by the formation of misfolded oligomers, by proteins such as amyloid-ß, α-synuclein and tau. Given that both cell membranes and mitochondria are increasingly recognised as key targets of oligomer toxicity, we investigated the damaging effects of aggregates of HypF-N on mitochondrial membranes. Essentially, we found that HypF-N oligomers characterised by high surface hydrophobicity (type A) were able to trigger a robust permeabilisation of mito-mimetic liposomes possessing cardiolipin-rich membranes and dysfunction of isolated mitochondria, as demonstrated by a combination of mitochondrial shrinking, lowering of mitochondrial membrane potential and cytochrome c release. Furthermore, using single-channel electrophysiology recordings we obtained evidence that the type A aggregates induced currents reflecting formation of ion-conducting pores in mito-mimetic planar phospholipid bilayers, with multi-level conductances ranging in the hundreds of pS at negative membrane voltages. Conversely, HypF-N oligomers with low surface hydrophobicity (type B) could not permeabilise or porate mitochondrial membranes. These results suggest an inherent toxicity of membrane-active aggregates of amyloid-forming proteins to mitochondria, and that targeting of oligomer-mitochondrial membrane interactions might therefore afford protection against such damage.


Assuntos
Amiloide/metabolismo , Carboxil e Carbamoil Transferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Mitocôndrias/fisiologia , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo , Peptídeos beta-Amiloides/metabolismo , Cardiolipinas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Potencial da Membrana Mitocondrial , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , alfa-Sinucleína/metabolismo , Proteínas tau/metabolismo
19.
iScience ; 23(1): 100809, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31927482

RESUMO

Spinal muscular atrophy (SMA) is a devastating motor neuron disorder caused by mutations in the survival motor neuron (SMN) gene. It remains unclear how SMN deficiency leads to the loss of motor neurons. By screening Schizosaccharomyces pombe, we found that the growth defect of an SMN mutant can be alleviated by deletion of the actin-capping protein subunit gene acp1+. We show that SMN mutated cells have splicing defects in the profilin gene, which thus directly hinder actin cytoskeleton homeostasis including endocytosis and cytokinesis. We conclude that deletion of acp1+ in an SMN mutant background compensates for actin cytoskeleton alterations by restoring redistribution of actin monomers between different types of cellular actin networks. Our data reveal a direct correlation between an impaired function of SMN in snRNP assembly and defects in actin dynamics. They also point to important common features in the pathogenic mechanism of SMA and ALS.

20.
Biochim Biophys Acta Biomembr ; 1862(2): 183064, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31521630

RESUMO

Misfolding and aggregate formation by the tau protein has been closely related with neurotoxicity in a large group of human neurodegenerative disorders, which includes Alzheimer's disease. Here, we investigate the membrane-active properties of tau oligomers on mitochondrial membranes, using minimalist in vitro model systems. Thus, exposure of isolated mitochondria to oligomeric tau evoked a disruption of mitochondrial membrane integrity, as evidenced by a combination of organelle swelling, efflux of cytochrome c and loss of the mitochondrial membrane potential. Tau-induced mitochondrial dysfunction occurred independently of the mitochondrial permeability transition (mPT) pore complex. Notably, mitochondria were rescued by pre-incubation with 10-N-nonyl acridine orange (NAO), a molecule that specifically binds cardiolipin (CL), the signature phospholipid of mitochondrial membranes. Additionally, NAO prevented direct binding of tau oligomers to isolated mitochondria. At the same time, tau proteins exhibited high affinity to CL-enriched membranes, whilst permeabilisation of lipid vesicles also strongly correlated with CL content. Intriguingly, using single-channel electrophysiology, we could demonstrate the formation of non-selective ion-conducting tau nanopores exhibiting multilevel conductances in mito-mimetic bilayers. Taken together, the data presented here advances a scenario in which toxic cytosolic entities of tau protein would target mitochondrial organelles by associating with their CL-rich membrane domains, leading to membrane poration and compromised mitochondrial structural integrity.


Assuntos
Cardiolipinas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Proteínas tau/farmacologia , Humanos , Membranas Mitocondriais/metabolismo , Nanoporos , Permeabilidade/efeitos dos fármacos , Ligação Proteica , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA