Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Plant Cell Environ ; 44(9): 2879-2897, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34169547

RESUMO

Tropical forest canopies cycle vast amounts of carbon, yet we still have a limited understanding of how these critical ecosystems will respond to climate warming. We implemented in situ leaf-level + 3°C experimental warming from the understory to the upper canopy of two Puerto Rican tropical tree species, Guarea guidonia and Ocotea sintenisii. After approximately 1 month of continuous warming, we assessed adjustments in photosynthesis, chlorophyll fluorescence, stomatal conductance, leaf traits and foliar respiration. Warming did not alter net photosynthetic temperature response for either species; however, the optimum temperature of Ocotea understory leaf photosynthetic electron transport shifted upward. There was no Ocotea respiratory treatment effect, while Guarea respiratory temperature sensitivity (Q10 ) was down-regulated in heated leaves. The optimum temperatures for photosynthesis (Topt ) decreased 3-5°C from understory to the highest canopy position, perhaps due to upper canopy stomatal conductance limitations. Guarea upper canopy Topt was similar to the mean daytime temperatures, while Ocotea canopy leaves often operated above Topt . With minimal acclimation to warmer temperatures in the upper canopy, further warming could put these forests at risk of reduced CO2 uptake, which could weaken the overall carbon sink strength of this tropical forest.


Assuntos
Aclimatação , Meliaceae/fisiologia , Ocotea/fisiologia , Fotossíntese , Transpiração Vegetal , Termotolerância , Árvores/fisiologia , Aclimatação/fisiologia , Respiração Celular/fisiologia , Temperatura Alta , Meliaceae/metabolismo , Ocotea/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Termotolerância/fisiologia
2.
Glob Chang Biol ; 27(24): 6423-6435, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469626

RESUMO

Tropical forests are expected to experience unprecedented warming and increases in hurricane disturbances in the coming decades; yet, our understanding of how these productive systems, especially their belowground component, will respond to the combined effects of varied environmental changes remains empirically limited. Here we evaluated the responses of root dynamics (production, mortality, and biomass) to soil and understory warming (+4°C) and after two consecutive tropical hurricanes in our in situ warming experiment in a tropical forest of Puerto Rico: Tropical Responses to Altered Climate Experiment (TRACE). We collected minirhizotron images from three warmed plots and three control plots of 12 m2 . Following Hurricanes Irma and María in September 2017, the infrared heater warming treatment was suspended for repairs, which allowed us to explore potential legacy effects of prior warming on forest recovery. We found that warming significantly reduced root production and root biomass over time. Following hurricane disturbance, both root biomass and production increased substantially across all plots; the root biomass increased 2.8-fold in controls but only 1.6-fold in previously warmed plots. This pattern held true for both herbaceous and woody roots, suggesting that the consistent antecedent warming conditions reduced root capacity to recover following hurricane disturbance. Root production and mortality were both related to soil ammonium nitrogen and microbial biomass nitrogen before and after the hurricanes. This experiment has provided an unprecedented look at the complex interactive effects of disturbance and climate change on the root component of a tropical forested ecosystem. A decrease in root production in a warmer world and slower root recovery after a major hurricane disturbance, as observed here, are likely to have longer-term consequences for tropical forest responses to future global change.


Assuntos
Tempestades Ciclônicas , Biomassa , Mudança Climática , Ecossistema , Florestas , Solo , Árvores , Clima Tropical
4.
Glob Chang Biol ; 26(6): 3417-3428, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32196863

RESUMO

Climate change is predicted to result in warmer and drier Neotropical forests relative to current conditions. Negative density-dependent feedbacks, mediated by natural enemies, are key to maintaining the high diversity of tree species found in the tropics, yet we have little understanding of how projected changes in climate are likely to affect these critical controls. Over 3 years, we evaluated the effects of a natural drought and in situ experimental warming on density-dependent feedbacks on seedling demography in a wet tropical forest in Puerto Rico. In the +4°C warming treatment, we found that seedling survival increased with increasing density of the same species (conspecific). These positive density-dependent feedbacks were not associated with a decrease in aboveground natural enemy pressure. If positive density-dependent feedbacks are not transient, the diversity of tropical wet forests, which may rely on negative density dependence to drive diversity, could decline in a future warmer, drier world.


Assuntos
Florestas , Árvores , Mudança Climática , Porto Rico , Plântula , Clima Tropical
5.
New Phytol ; 222(2): 768-784, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30597597

RESUMO

The temperature response of photosynthesis is one of the key factors determining predicted responses to warming in global vegetation models (GVMs). The response may vary geographically, owing to genetic adaptation to climate, and temporally, as a result of acclimation to changes in ambient temperature. Our goal was to develop a robust quantitative global model representing acclimation and adaptation of photosynthetic temperature responses. We quantified and modelled key mechanisms responsible for photosynthetic temperature acclimation and adaptation using a global dataset of photosynthetic CO2 response curves, including data from 141 C3 species from tropical rainforest to Arctic tundra. We separated temperature acclimation and adaptation processes by considering seasonal and common-garden datasets, respectively. The observed global variation in the temperature optimum of photosynthesis was primarily explained by biochemical limitations to photosynthesis, rather than stomatal conductance or respiration. We found acclimation to growth temperature to be a stronger driver of this variation than adaptation to temperature at climate of origin. We developed a summary model to represent photosynthetic temperature responses and showed that it predicted the observed global variation in optimal temperatures with high accuracy. This novel algorithm should enable improved prediction of the function of global ecosystems in a warming climate.


Assuntos
Aclimatação/fisiologia , Fotossíntese/fisiologia , Plantas/metabolismo , Temperatura , Aclimatação/efeitos dos fármacos , Dióxido de Carbono/farmacologia , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Modelos Lineares , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Plantas/efeitos dos fármacos , Ribulose-Bifosfato Carboxilase/metabolismo
6.
New Phytol ; 216(1): 136-149, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805245

RESUMO

Changes in tropical forest carbon sink strength during El Niño Southern Oscillation (ENSO) events can indicate future behavior under climate change. Previous studies revealed ˜6 Mg C ha-1  yr-1 lower net ecosystem production (NEP) during ENSO year 1998 compared with non-ENSO year 2000 in a Costa Rican tropical rainforest. We explored environmental drivers of this change and examined the contributions of ecosystem respiration (RE) and gross primary production (GPP) to this weakened carbon sink. For 1998-2000, we estimated RE using chamber-based respiration measurements, and we estimated GPP in two ways: using (1) the canopy process model MAESTRA, and (2) combined eddy covariance and chamber respiration data. MAESTRA-estimated GPP did not statistically differ from GPP estimated using approach 2, but was ˜ 28% greater than published GPP estimates for the same site and years using eddy covariance data only. A 7% increase in RE (primarily increased soil respiration) and a 10% reduction in GPP contributed equally to the difference in NEP between ENSO year 1998 and non-ENSO year 2000. A warming and drying climate for tropical forests may yield a weakened carbon sink from both decreased GPP and increased RE. Understanding physiological acclimation will be critical for the large carbon stores in these ecosystems.


Assuntos
Sequestro de Carbono , El Niño Oscilação Sul , Fotossíntese , Floresta Úmida , Respiração Celular , Ritmo Circadiano/fisiologia , Clima , Ecossistema , Modelos Teóricos , Estações do Ano , Árvores/crescimento & desenvolvimento , Árvores/fisiologia
8.
Glob Chang Biol ; 21(6): 2111-21, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25641092

RESUMO

Although tropical forests account for only a fraction of the planet's terrestrial surface, they exchange more carbon dioxide with the atmosphere than any other biome on Earth, and thus play a disproportionate role in the global climate. In the next 20 years, the tropics will experience unprecedented warming, yet there is exceedingly high uncertainty about their potential responses to this imminent climatic change. Here, we prioritize research approaches given both funding and logistical constraints in order to resolve major uncertainties about how tropical forests function and also to improve predictive capacity of earth system models. We investigate overall model uncertainty of tropical latitudes and explore the scientific benefits and inevitable trade-offs inherent in large-scale manipulative field experiments. With a Coupled Model Intercomparison Project Phase 5 analysis, we found that model variability in projected net ecosystem production was nearly 3 times greater in the tropics than for any other latitude. Through a review of the most current literature, we concluded that manipulative warming experiments are vital to accurately predict future tropical forest carbon balance, and we further recommend the establishment of a network of comparable studies spanning gradients of precipitation, edaphic qualities, plant types, and/or land use change. We provide arguments for long-term, single-factor warming experiments that incorporate warming of the most biogeochemically active ecosystem components (i.e. leaves, roots, soil microbes). Hypothesis testing of underlying mechanisms should be a priority, along with improving model parameterization and constraints. No single tropical forest is representative of all tropical forests; therefore logistical feasibility should be the most important consideration for locating large-scale manipulative experiments. Above all, we advocate for multi-faceted research programs, and we offer arguments for what we consider the most powerful and urgent way forward in order to improve our understanding of tropical forest responses to climate change.


Assuntos
Mudança Climática , Florestas , Pesquisa , Clima Tropical , Ciclo do Carbono , Dióxido de Carbono , Modelos Teóricos , Temperatura
9.
Oecologia ; 177(4): 1131-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25596955

RESUMO

Within-canopy gradients of leaf functional traits have been linked to both light availability and vertical gradients in leaf water potential. While observational studies can reveal patterns in leaf traits, within-canopy experimental manipulations can provide mechanistic insight to tease apart multiple interacting drivers. Our objectives were to disentangle effects of height and light environment on leaf functional traits by experimentally shading branches along vertical gradients within a sugar maple (Acer saccharum) forest. Shading reduced leaf mass per area (LMA), leaf density, area-based leaf nitrogen (N(area)), and carbon:nitrogen (C:N) ratio, and increased mass-based leaf nitrogen (N(mass)), highlighting the importance of light availability on leaf morphology and chemistry. Early in the growing season, midday leaf water potential (Ψ(mid)), LMA, and N(area) were driven primarily by height; later in the growing season, light became the most important driver for LMA and Narea. Carbon isotope composition (δ(13)C) displayed strong, linear correlations with height throughout the growing season, but did not change with shading, implying that height is more influential than light on water use efficiency and stomatal behavior. LMA, leaf density, N(mass), C:N ratio, and δ(13)C all changed seasonally, suggesting that leaf ageing effects on leaf functional traits are equally as important as microclimatic conditions. Overall, our results indicate that: (1) stomatal sensitivity to vapor pressure deficit or Ψ(mid) constrains the supply of CO2 to leaves at higher heights, independent of light environment, and (2) LMA and N(area) distributions become functionally optimized through morphological acclimation to light with increasing leaf age despite height-related constraints.


Assuntos
Aclimatação , Acer/fisiologia , Luz , Fenótipo , Fotossíntese , Folhas de Planta/fisiologia , Estresse Fisiológico , Árvores/fisiologia , Acer/crescimento & desenvolvimento , Acer/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono/metabolismo , Escuridão , Nitrogênio/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Árvores/anatomia & histologia , Árvores/metabolismo , Água/fisiologia
10.
Ecology ; 91(9): 2705-15, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20957964

RESUMO

Ecohydrology and invasive ecology have become increasingly important in the context of global climate change. This study presents the first in-depth analysis of the water use of invasive and native plants of the same growth form at multiple scales: leaf, plant, and ecosystem. We reanalyzed data for several hundred native and invasive species from over 40 published studies worldwide to glean global trends and to highlight how patterns vary depending on both scale and climate. We analyzed all pairwise combinations of co-occurring native and invasive species for higher comparative resolution of the likelihood of an invasive species using more water than a native species and tested for significance using bootstrap methods. At each scale, we found several-fold differences in water use between specific paired invasive and native species. At the leaf scale, we found a strong tendency for invasive species to have greater stomatal conductance than native species. At the plant scale, however, natives and invasives were equally likely to have the higher sap flow rates. Available data were much fewer for the ecosystem scale; nevertheless, we found that invasive-dominated ecosystems were more likely to have higher sap flow rates per unit ground area than native-dominated ecosystems. Ecosystem-scale evapotranspiration, on the other hand, was equally likely to be greater for systems dominated by invasive and native species of the same growth form. The inherent disconnects in the determination of water use when changing scales from leaf to plant to ecosystem reveal hypotheses for future studies and a critical need for more ecosystem-scale water use measurements in invasive- vs. native-dominated systems. The differences in water use of native and invasive species also depended strongly on climate, with the greater water use of invasives enhanced in hotter, wetter climates at the coarser scales.


Assuntos
Plantas/classificação , Plantas/metabolismo , Água/metabolismo , Clima , Demografia , Ecossistema , Folhas de Planta/metabolismo
11.
Ecology ; 91(6): 1730-9, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20583714

RESUMO

Both within and between species, leaf physiological parameters are strongly related to leaf dry mass per area (LMA, g/m2), which has been found to increase from forest floor to canopy top in every forest where it has been measured. Although vertical LMA gradients in forests have historically been attributed to a direct phenotypic response to light, an increasing number of recent studies have provided evidence that water limitation in the upper canopy can constrain foliar morphological adaptations to higher light levels. We measured height, light, and LMA of all species encountered along 45 vertical canopy transects across a Costa Rican tropical rain forest. LMA was correlated with light levels in the lower canopy until approximately 18 m sample height and 22% diffuse transmittance. Height showed a remarkably linear relationship with LMA throughout the entire vertical canopy profile for all species pooled and for each functional group individually (except epiphytes), possibly through the influence of gravity on leaf water potential and turgor pressure. Models of forest function may be greatly simplified by estimating LMA-correlated leaf physiological parameters solely from foliage height profiles, which in turn can be assessed with satellite- and aircraft-based remote sensing.


Assuntos
Ecossistema , Luz , Folhas de Planta/anatomia & histologia , Árvores , Clima Tropical , Adaptação Fisiológica , Folhas de Planta/fisiologia
12.
Ecol Evol ; 10(16): 8906-8915, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32884666

RESUMO

The effects of climate change on tropical forests may have global consequences due to the forests' high biodiversity and major role in the global carbon cycle. In this study, we document the effects of experimental warming on the abundance and composition of a tropical forest floor herbaceous plant community in the Luquillo Experimental Forest, Puerto Rico. This study was conducted within Tropical Responses to Altered Climate Experiment (TRACE) plots, which use infrared heaters under free-air, open-field conditions, to warm understory vegetation and soils + 4°C above nearby control plots. Hurricanes Irma and María damaged the heating infrastructure in the second year of warming, therefore, the study included one pretreatment year, one year of warming, and one year of hurricane response with no warming. We measured percent leaf cover of individual herbaceous species, fern population dynamics, and species richness and diversity within three warmed and three control plots. Results showed that one year of experimental warming did not significantly affect the cover of individual herbaceous species, fern population dynamics, species richness, or species diversity. In contrast, herbaceous cover increased from 20% to 70%, bare ground decreased from 70% to 6%, and species composition shifted pre to posthurricane. The negligible effects of warming may have been due to the short duration of the warming treatment or an understory that is somewhat resistant to higher temperatures. Our results suggest that climate extremes that are predicted to increase with climate change, such as hurricanes and droughts, may cause more abrupt changes in tropical forest understories than longer-term sustained warming.

13.
Tree Physiol ; 29(10): 1213-22, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19675074

RESUMO

We measured CO(2) efflux from wood for Eucalyptus in Hawaii for 7 years and compared these measurements with those on three- and four-and-a-half-year-old Eucalyptus in Brazil. In Hawaii, CO(2) efflux from wood per unit biomass declined approximately 10x from age two to age five, twice as much as the decline in tree growth. The CO(2) efflux from wood in Brazil was 8-10x lower than that for comparable Hawaii trees with similar growth rates. Growth and maintenance respiration coefficients calculated from Hawaii wood CO(2) efflux declined with tree age and size (the growth coefficient declined from 0.4 mol C efflux mol C(-1) wood growth at age one to 0.1 mol C efflux mol C(-1) wood growth at age six; the maintenance coefficient from 0.006 to 0.001 micromol C (mol C biomass)(-1) s(-1) at 20 degrees C over the same time period). These results suggest interference with CO(2) efflux through bark that decouples CO(2) efflux from respiration. We also compared the biomass fractions and wood CO(2) efflux for the aboveground woody parts for 3- and 7-year-old trees in Hawaii to estimate how focusing measurements near the ground might bias the stand-level estimates of wood CO(2) efflux. Three-year-old Eucalyptus in Hawaii had a higher proportion of branches < 0.5 cm in diameter and a lower proportion of stem biomass than did 7-year-old trees. Biomass-specific CO(2) efflux measured at 1.4 m extrapolated to the tree could bias tree level estimates by approximately 50%, assuming no refixation from bark photosynthesis. However, the bias did not differ for the two tree sizes. Foliar respiration was identical per unit nitrogen for comparable treatments in Brazil and Hawaii (4.2 micromol C mol N(-1) s(-1) at 20 degrees C).


Assuntos
Dióxido de Carbono/metabolismo , Eucalyptus/metabolismo , Brasil , Havaí , Fotossíntese/fisiologia
14.
Plant Cell Environ ; 31(4): 473-83, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18182017

RESUMO

Foliar respiration is a major component of ecosystem respiration, yet extrapolations are often uncertain in tropical forests because of indirect estimates of leaf area index (LAI). A portable tower was used to directly measure LAI and night-time foliar respiration from 52 vertical transects throughout an old-growth tropical rain forest in Costa Rica. In this study, we (1) explored the effects of structural, functional and environmental variables on foliar respiration; (2) extrapolated foliar respiration to the ecosystem; and (3) estimated ecosystem respiration. Foliar respiration temperature response was constant within plant functional group, and foliar morphology drove much of the within-canopy variability in respiration and foliar nutrients. Foliar respiration per unit ground area was 3.5 +/- 0.2 micromol CO2 m(-2) s(-1), and ecosystem respiration was 9.4 +/- 0.5 micromol CO2 m(-2) s(-1)[soil = 41%; foliage = 37%; woody = 14%; coarse woody debris (CWD) = 7%]. When modelled with El Niño Southern Oscillation (ENSO) year temperatures, foliar respiration was 9% greater than when modelled with temperatures from a normal year, which is in the range of carbon sink versus source behaviour for this forest. Our ecosystem respiration estimate from component fluxes was 33% greater than night-time net ecosystem exchange for the same forest, suggesting that studies reporting a large carbon sink for tropical rain forests based solely on eddy flux measurements may be in error.


Assuntos
Respiração Celular/fisiologia , Ecossistema , Folhas de Planta/metabolismo , Árvores/metabolismo , Clima Tropical , Costa Rica , Fotossíntese/fisiologia , Solo
15.
Ecol Evol ; 8(4): 1932-1944, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468013

RESUMO

The response of tropical forests to global warming is one of the largest uncertainties in predicting the future carbon balance of Earth. To determine the likely effects of elevated temperatures on tropical forest understory plants and soils, as well as other ecosystems, an infrared (IR) heater system was developed to provide in situ warming for the Tropical Responses to Altered Climate Experiment (TRACE) in the Luquillo Experimental Forest in Puerto Rico. Three replicate heated 4-m-diameter plots were warmed to maintain a 4°C increase in understory vegetation compared to three unheated control plots, as sensed by IR thermometers. The equipment was larger than any used previously and was subjected to challenges different from those of many temperate ecosystem warming systems, including frequent power surges and outages, high humidity, heavy rains, hurricanes, saturated clayey soils, and steep slopes. The system was able to maintain the target 4.0°C increase in hourly average vegetation temperatures to within ± 0.1°C. The vegetation was heterogeneous and on a 21° slope, which decreased uniformity of the warming treatment on the plots; yet, the green leaves were fairly uniformly warmed, and there was little difference among 0-10 cm depth soil temperatures at the plot centers, edges, and midway between. Soil temperatures at the 40-50 cm depth increased about 3°C compared to the controls after a month of warming. As expected, the soil in the heated plots dried faster than that of the control plots, but the average soil moisture remained adequate for the plants. The TRACE heating system produced an adequately uniform warming precisely controlled down to at least 50-cm soil depth, thereby creating a treatment that allows for assessing mechanistic responses of tropical plants and soil to warming, with applicability to other ecosystems. No physical obstacles to scaling the approach to taller vegetation (i.e., trees) and larger plots were observed.

17.
Tree Physiol ; 37(10): 1337-1351, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338906

RESUMO

A key trait used in canopy and ecosystem function modeling, leaf mass per area (LMA), is influenced by changes in both leaf thickness and leaf density (LMA = Thickness × Density). In tall trees, LMA is understood to increase with height through two primary mechanisms: (i) increasing palisade layer thickness (and thus leaf thickness) in response to light and/or (ii) reduced cell expansion and intercellular air space in response to hydrostatic constraints, leading to increased leaf density. Our objective was to investigate within-canopy gradients in leaf anatomical traits in order to understand environmental factors that influence leaf morphology in a sugar maple (Acer saccharum Marshall) forest canopy. We teased apart the effects of light and height on anatomical traits by sampling at exposed and closed canopies that had different light conditions at similar heights. As expected, palisade layer thickness responded strongly to cumulative light exposure. Mesophyll porosity, however, was weakly and negatively correlated with light and height (i.e., hydrostatic gradients). Reduced mesophyll porosity was not likely caused by limitations on cell expansion; in fact, epidermal cell width increased with height. Palisade layer thickness was better related to LMA, leaf density and leaf thickness than was mesophyll porosity. Vein diameter and fraction of vascular tissue also increased with height and LMA, density and thickness, revealing that greater investment in vascular and support tissue may be a third mechanism for increased LMA with height. Overall, decreasing mesophyll porosity with height was likely due to palisade cells expanding into the available air space and also greater investments in vascular and support tissue, rather than a reduction of cell expansion due to hydrostatic constraints. Our results provide evidence that light influences both palisade layer thickness and mesophyll porosity and indicate that hydrostatic gradients influence leaf vascular and support tissues in mature Acer saccharum trees.


Assuntos
Acer/anatomia & histologia , Acer/fisiologia , Acer/crescimento & desenvolvimento , Luz , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Água/fisiologia
18.
Tree Physiol ; 36(9): 1077-91, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27246164

RESUMO

Leaf functional traits are used in modeling forest canopy photosynthesis (Ac) due to strong correlations between photosynthetic capacity, leaf mass per area (LMA) and leaf nitrogen per area (Narea). Vertical distributions of these traits may change over time in temperate deciduous forests as a result of acclimation to light, which may result in seasonal changes in Ac To assess both spatial and temporal variations in key traits, we measured vertical profiles of Narea and LMA from leaf expansion through leaf senescence in a sugar maple (Acer saccharum Marshall) forest. To investigate mechanisms behind coordinated changes in leaf morphology and function, we also measured vertical variation in leaf carbon isotope composition (δ(13)C), predawn turgor pressure, leaf water potential and osmotic potential. Finally, we assessed potential biases in Ac estimations by parameterizing models with and without vertical and seasonal Narea variations following leaf expansion. Our data are consistent with the hypothesis that hydrostatic constraints on leaf morphology drive the vertical increase in LMA with height early in the growing season; however, LMA in the upper canopy continued to increase over time during light acclimation, indicating that light is primarily driving gradients in LMA later in the growing season. Models with no seasonal variation in Narea overestimated Ac by up to 11% early in the growing season, while models with no vertical variation in Narea overestimated Ac by up to 60% throughout the season. According to the multilayer model, the upper 25% of leaf area contributed to over 50% of Ac, but when gradients of intercellular CO2, as estimated from δ(13)C, were accounted for, the upper 25% of leaf area contributed to 26% of total Ac Our results suggest that ignoring vertical variation of key traits can lead to considerable overestimation of Ac.


Assuntos
Acer/fisiologia , Modelos Biológicos , Fotossíntese , Folhas de Planta/fisiologia , Estações do Ano , Árvores/fisiologia , Acer/anatomia & histologia , Clima , Florestas , Folhas de Planta/anatomia & histologia , Árvores/anatomia & histologia
19.
PLoS One ; 10(10): e0140384, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26461108

RESUMO

Most palm species occur in the shaded lower strata of tropical rain forests, but how their traits relate to shade adaptation is poorly understood. We hypothesized that palms are adapted to the shade of their native habitats by convergent evolution towards high net carbon gain efficiency (CGEn), which is given by the maximum photosynthetic rate to dark respiration rate ratio. Leaf mass per area, maximum photosynthetic rate, dark respiration and N and P concentrations were measured in 80 palm species grown in a common garden, and combined with data of 30 palm species growing in their native habitats. Compared to other species from the global leaf economics data, dicotyledonous broad-leaved trees in tropical rainforest or other monocots in the global leaf economics data, palms possessed consistently higher CGEn, achieved by lowered dark respiration and fairly high foliar P concentration. Combined phylogenetic analyses of evolutionary signal and trait evolution revealed convergent evolution towards high CGEn in palms. We conclude that high CGEn is an evolutionary strategy that enables palms to better adapt to shady environments than coexisting dicot tree species, and may convey advantages in competing with them in the tropical forest understory. These findings provide important insights for understanding the evolution and ecology of palms, and for understanding plant shade adaptations of lower rainforest strata. Moreover, given the dominant role of palms in tropical forests, these findings are important for modelling carbon and nutrient cycling in tropical forest ecosystems.


Assuntos
Adaptação Fisiológica , Arecaceae/fisiologia , Evolução Biológica , Carbono/metabolismo , Respiração Celular , Fotossíntese , Filogenia , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Especificidade da Espécie
20.
J Environ Qual ; 33(3): 1055-61, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15224944

RESUMO

Little research has been conducted in the Lake States (Minnesota, Wisconsin, and Michigan) to evaluate the effects of municipal and industrial by-product applications on the early growth of short rotation woody crops such as hybrid poplar. Anticipated shortages of harvestable-age aspen in the next decade can be alleviated and rural development can be enhanced through the application of by-products to forest soils. This study was conducted to evaluate the effects of inorganic fertilizer, boiler ash, biosolids, and the co-application of ash and biosolids application on tree growth and soil properties by measuring hybrid poplar clone NM-6 (Populus nigra L. x P. maximowiczii A. Henry) yield, nutrient uptake, and select post-harvest soil properties after 15 wk of greenhouse growth. Treatments included a control of no amendment; agricultural lime; inorganic N, P, and K; three types of boiler ash; biosolids application rates equivalent to 70, 140, 210, and 280 kg available N ha(-1); and boiler ash co-applied with biosolids. All of the by-products treatments showed biomass production that was equal to or greater than inorganic fertilizer and lime treatments. A trend of increased biomass with increasing rates of biosolids was observed. Soil P concentration increased with increasing rates of biosolids application. None of the by-products treatments resulted in plant tissue metal concentrations greater than metal concentrations of plant tissue amended with inorganic amendments. Biosolids, boiler ash, and the co-application of biosolids and boiler ash together on forest soils were as beneficial to plant growth as inorganic fertilizers.


Assuntos
Populus/crescimento & desenvolvimento , Eliminação de Resíduos/métodos , Poluentes do Solo/análise , Solo , Árvores , Biomassa , Conservação dos Recursos Naturais , Fertilizantes , Incineração , Resíduos Industriais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA