Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 39(39 Suppl 1): i297-i307, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37387139

RESUMO

Nanopore sequencers generate electrical raw signals in real-time while sequencing long genomic strands. These raw signals can be analyzed as they are generated, providing an opportunity for real-time genome analysis. An important feature of nanopore sequencing, Read Until, can eject strands from sequencers without fully sequencing them, which provides opportunities to computationally reduce the sequencing time and cost. However, existing works utilizing Read Until either (i) require powerful computational resources that may not be available for portable sequencers or (ii) lack scalability for large genomes, rendering them inaccurate or ineffective. We propose RawHash, the first mechanism that can accurately and efficiently perform real-time analysis of nanopore raw signals for large genomes using a hash-based similarity search. To enable this, RawHash ensures the signals corresponding to the same DNA content lead to the same hash value, regardless of the slight variations in these signals. RawHash achieves an accurate hash-based similarity search via an effective quantization of the raw signals such that signals corresponding to the same DNA content have the same quantized value and, subsequently, the same hash value. We evaluate RawHash on three applications: (i) read mapping, (ii) relative abundance estimation, and (iii) contamination analysis. Our evaluations show that RawHash is the only tool that can provide high accuracy and high throughput for analyzing large genomes in real-time. When compared to the state-of-the-art techniques, UNCALLED and Sigmap, RawHash provides (i) 25.8× and 3.4× better average throughput and (ii) significantly better accuracy for large genomes, respectively. Source code is available at https://github.com/CMU-SAFARI/RawHash.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Genômica , Ploidias , DNA
2.
Bioinformatics ; 38(19): 4633-4635, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35976109

RESUMO

MOTIVATION: A genome read dataset can be quickly and efficiently remapped from one reference to another similar reference (e.g., between two reference versions or two similar species) using a variety of tools, e.g., the commonly used CrossMap tool. With the explosion of available genomic datasets and references, high-performance remapping tools will be even more important for keeping up with the computational demands of genome assembly and analysis. RESULTS: We provide FastRemap, a fast and efficient tool for remapping reads between genome assemblies. FastRemap provides up to a 7.82× speedup (6.47×, on average) and uses as low as 61.7% (80.7%, on average) of the peak memory consumption compared to the state-of-the-art remapping tool, CrossMap. AVAILABILITY AND IMPLEMENTATION: FastRemap is written in C++. Source code and user manual are freely available at: github.com/CMU-SAFARI/FastRemap. Docker image available at: https://hub.docker.com/r/alkanlab/fastremap. Also available in Bioconda at: https://anaconda.org/bioconda/fastremap-bio.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica/métodos , Genoma
3.
Genome Biol ; 25(1): 49, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365730

RESUMO

Nanopore sequencing generates noisy electrical signals that need to be converted into a standard string of DNA nucleotide bases using a computational step called basecalling. The performance of basecalling has critical implications for all later steps in genome analysis. Therefore, there is a need to reduce the computation and memory cost of basecalling while maintaining accuracy. We present RUBICON, a framework to develop efficient hardware-optimized basecallers. We demonstrate the effectiveness of RUBICON by developing RUBICALL, the first hardware-optimized mixed-precision basecaller that performs efficient basecalling, outperforming the state-of-the-art basecallers. We believe RUBICON offers a promising path to develop future hardware-optimized basecallers.


Assuntos
Aprendizado Profundo , Nanoporos , Análise de Sequência de DNA , Genômica , Nucleotídeos , DNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA