Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nat Genet ; 36(7): 755-9, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15220920

RESUMO

Retinitis pigmentosa is an untreatable, inherited retinal disease that leads to blindness. The disease initiates with the loss of night vision due to rod photoreceptor degeneration, followed by irreversible, progressive loss of cone photoreceptor. Cone loss is responsible for the main visual handicap, as cones are essential for day and high-acuity vision. Their loss is indirect, as most genes associated with retinitis pigmentosa are not expressed by these cells. We previously showed that factors secreted from rods are essential for cone viability. Here we identified one such trophic factor by expression cloning and named it rod-derived cone viability factor (RdCVF). RdCVF is a truncated thioredoxin-like protein specifically expressed by photoreceptors. The identification of this protein offers new treatment possibilities for retinitis pigmentosa.


Assuntos
Retinose Pigmentar/metabolismo , Tiorredoxinas/química , Sequência de Aminoácidos , Western Blotting , Clonagem Molecular , Humanos , Imuno-Histoquímica , Hibridização In Situ , Dados de Sequência Molecular , RNA Mensageiro/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
2.
Sci Rep ; 13(1): 11196, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37433822

RESUMO

Topically applied all-trans-retinoic acid (RA) is a gold-standard anti-aging molecule used in dermatology. As its cosmetic counterpart used in anti-aging, Retinol (ROL) is also a known metabolic precursor of RA. Despite this metabolic link, they haven't been compared exhaustively in vivo at a mechanistic level. Therefore, to highlight the effect of a topical application of both molecules on in vivo skin, we undertook a longitudinal 1-year study and performed an untargeted proteomic analysis to get a more holistic view on the underlying biological mechanisms of action. The generation of the temporal proteomics signatures of retinol and all-trans-retinoic acid reveals the impact of these molecules on biological functions related to the aging of skin. New biological functions impacted by retinoids were discovered: glycan metabolism and protein biosynthesis. In addition, the temporal analysis reveals highest modulations at early time points while the physical measures, such as epidermal thickening, was mostly observed at the latest time point, demonstrating a strong time lapse between molecular and morphological impacts. Finally, these global temporal signatures could be used to identify new cosmetic compounds of interest.


Assuntos
Proteoma , Vitamina A , Humanos , Estudos Longitudinais , Proteômica , Tretinoína/farmacologia
3.
Microbiome ; 11(1): 124, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264459

RESUMO

BACKGROUND: The effects of air pollutants, particularly polycyclic aromatic hydrocarbons (PAHs), on the skin microbiome remain poorly understood. Thus, to better understand the interplay between air pollutants, microbiomes, and skin conditions, we applied metagenomics and metabolomics to analyze the effects of PAHs in air pollution on the skin microbiomes of over 120 subjects residing in two cities in China with different levels of air pollution. RESULTS: The skin microbiomes differentiated into two cutotypes (termed 1 and 2) with distinct taxonomic, functional, resistome, and metabolite compositions as well as skin phenotypes that transcended geography and host factors. High PAH exposure was linked to dry skin and cutotype 2, which was enriched with species with potential biodegradation functions and had reduced correlation network structure integrity. The positive correlations identified between dominant taxa, key functional genes, and metabolites in the arginine biosynthesis pathway in cutotype 1 suggest that arginine from bacteria contributes to the synthesis of filaggrin-derived natural moisturizing factors (NMFs), which provide hydration for the skin, and could explain the normal skin phenotype observed. In contrast, no correlation with the arginine biosynthesis pathway was observed in cutotype 2, which indicates the limited hydration functions of NMFs and explains the observed dry skin phenotype. In addition to dryness, skin associated with cutotype 2 appeared prone to other adverse conditions such as inflammation. CONCLUSIONS: This study revealed the roles of PAHs in driving skin microbiome differentiation into cutotypes that vary extensively in taxonomy and metabolic functions and may subsequently lead to variations in skin-microbe interactions that affect host skin health. An improved understanding of the roles of microbiomes on skin exposed to air pollutants can aid the development of strategies that harness microbes to prevent undesirable skin conditions. Video Abstract.


Assuntos
Poluentes Atmosféricos , Microbiota , Hidrocarbonetos Policíclicos Aromáticos , Pele/química , Poluentes Atmosféricos/análise , Biodegradação Ambiental , Microbiota/genética , Monitoramento Ambiental
4.
Anal Biochem ; 421(1): 43-55, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22056946

RESUMO

Human hair is principally composed of hair keratins and keratin-associated proteins (KAPs) that form a complex network giving the hair its rigidity and mechanical properties. However, during their growth, hairs are subject to various treatments that can induce irreversible damage. For a better understanding of the human hair protein structures, proteomic mass spectrometry (MS)-based strategies could assist in characterizing numerous isoforms and posttranslational modifications of human hair fiber proteins. However, due to their physicochemical properties, characterization of human hair proteins using classical proteomic approaches is still a challenge. To address this issue, we have used two complementary approaches to analyze proteins from the human hair cortex. The multidimensional protein identification technology (MudPit) approach allowed identifying all keratins and the major KAPs present in the hair as well as posttranslational modifications in keratins such as cysteine trioxidation, lysine, and histidine methylation. Then two-dimensional gel electrophoresis coupled with MS (2-DE gel MS) allowed us to obtain the most complete 2-DE gel pattern of human hair proteins, revealing an unexpected heterogeneity of keratin structures. Analyses of these structures by differential peptide mapping have brought evidence of cleaved species in hair keratins and suggest a preferential breaking zone in α-helical segments.


Assuntos
Cabelo/química , Queratinas Específicas do Cabelo/química , Queratinas/química , Proteômica/métodos , Sequência de Aminoácidos , Eletroforese em Gel Bidimensional , Cabelo/ultraestrutura , Humanos , Queratinas/genética , Queratinas Específicas do Cabelo/genética , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mapeamento de Peptídeos , Isoformas de Proteínas/química , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Espectrometria de Massas em Tandem
5.
Sci Rep ; 11(1): 18302, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34526566

RESUMO

Environmental pollution is composed of several factors, namely particulate matter (PM2.5, PM10), ozone and Ultra Violet (UV) rays among others and first and the most exposed tissue to these substances is the skin epidermis. It has been established that several skin disorders such as eczema, acne, lentigines and wrinkles are aggravated by exposure to atmospheric pollution. While pollutants can interact with skin surface, contamination of deep skin by ultrafine particles or Polycyclic aromatic hydrocarbons (PAH) might be explained by their presence in blood and hair cortex. Molecular mechanisms leading to skin dysfunction due to pollution exposure have been poorly explored in humans. In addition to various host skin components, cutaneous microbiome is another target of these environment aggressors and can actively contribute to visible clinical manifestation such as wrinkles and aging. The present study aimed to investigate the association between pollution exposure, skin microbiota, metabolites and skin clinical signs in women from two cities with different pollution levels. Untargeted metabolomics and targeted proteins were analyzed from D-Squame samples from healthy women (n = 67 per city), aged 25-45 years and living for at least 15 years in the Chinese cities of Baoding (used as a model of polluted area) and Dalian (control area with lower level of pollution). Additional samples by swabs were collected from the cheeks from the same population and microbiome was analysed using bacterial 16S rRNA as well as fungal ITS1 amplicon sequencing and metagenomics analysis. The level of exposure to pollution was assessed individually by the analysis of polycyclic aromatic hydrocarbons (PAH) and their metabolites in hair samples collected from each participant. All the participants of the study were assessed for the skin clinical parameters (acne, wrinkles, pigmented spots etc.). Women from the two cities (polluted and less polluted) showed distinct metabolic profiles and alterations in skin microbiome. Profiling data from 350 identified metabolites, 143 microbes and 39 PAH served to characterize biochemical events that correlate with pollution exposure. Finally, using multiblock data analysis methods, we obtained a potential molecular map consisting of multi-omics signatures that correlated with the presence of skin pigmentation dysfunction in individuals living in a polluted environment. Overall, these signatures point towards macromolecular alterations by pollution that could manifest as clinical sign of early skin pigmentation and/or other imperfections.


Assuntos
Biomarcadores , Exposição Ambiental/efeitos adversos , Poluição Ambiental/efeitos adversos , Genômica , Metabolômica , Pele/metabolismo , Suscetibilidade a Doenças , Genômica/métodos , Humanos , Metabolômica/métodos , Metagenoma , Metagenômica/métodos , Microbiota , Pele/microbiologia , Pele/patologia , Dermatopatias/etiologia , Dermatopatias/metabolismo , Dermatopatias/patologia
6.
Sci Rep ; 10(1): 18371, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087850

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Sci Rep ; 9(1): 7456, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-31092846

RESUMO

Clinical observations of both normal and pathological skin have shown that there is a heterogeneity based on the skin origin type. Beside external factors, intrinsic differences in skin cells could be a central element to determine skin types. This study aimed to understand the in vitro behaviour of epidermal cells of African and Caucasian skin types in the context of 3D reconstructed skin. Full-thickness skin models were constructed with site matched human keratinocytes and papillary fibroblasts to investigate potential skin type related differences. We report that reconstructed skin epidermis exhibited remarkable differences regarding stratification and differentiation according to skin types, as demonstrated by histological appearance, gene expression analysed by DNA microarray and quantitative proteomic analysis. Signalling pathways and processes related to terminal differentiation and lipid/ceramide metabolism were up-regulated in epidermis constructed with keratinocytes from Caucasian skin type when compared to that of keratinocytes from African skin type. Specifically, the expression of proteins involved in the processing of filaggrins was found different between skin models. Overall, we show unexpected differences in epidermal morphogenesis and differentiation between keratinocytes of Caucasian and African skin types in in vitro reconstructed skin containing papillary fibroblasts that could explain the differences in ethnic related skin behaviour.


Assuntos
Epiderme/patologia , Pele/metabolismo , Pele/patologia , População Negra/genética , Diferenciação Celular , Derme/citologia , Células Epidérmicas/metabolismo , Células Epidérmicas/patologia , Fibroblastos/metabolismo , Humanos , Queratinócitos/citologia , Modelos Biológicos , Morfogênese , Proteômica/métodos , População Branca/genética
8.
J Dermatol Sci ; 96(2): 114-124, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31628065

RESUMO

BACKGROUND: Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. OBJECTIVE: To investigate global proteomic alterations in diesel particulate extract (DPE)/ its vapor exposed skin keratinocytes. METHODS: We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/ DPE vapor on primary skin keratinocytes. RESULTS: We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/ its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p ≤ 0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/ DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/ DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/ DPE vapor. CONCLUSIONS: Our study highlights distinct adverse effects of chronic exposure to DPE/ DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution.

9.
Bioorg Med Chem ; 16(10): 5482-9, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18448343

RESUMO

To understand the hapten-protein complex formation in the context of skin contact allergy to p-amino aromatic derivatives, 2,5-dimethyl-p-benzoquinonediimine was used as a model compound to study the reactivity of p-benzoquinonediimines, first oxidation intermediates of allergenic p-amino aromatic compounds, toward a model peptide containing naturally occurring and potential reactive amino acids. LC-MS analysis, together with electrospray ionization MS/MS, was used for the determination of amino acid selectivity by studying the chemical modifications induced on the peptide due to covalent binding of the p-benzoquinonediimine. Results reported in this paper indicated that 2,5-dimethyl-p-benzoquinonediimine reacted with the epsilon-NH(2) group of lysine to first form a covalent adduct of the Schiff's base kind. Besides, an oxido-reduction process started that induced an oxidative deamination of lysine to form a peptidyl alpha-aminoadipic-delta-semialdehyde, by a mechanism similar to the one known for several enzymatic quinonoid co-factors, followed by an intramolecular cyclization of the peptide. From these results it could be concluded that lysine must be considered as an important amino acid for the hapten-protein complex formation in the case of p-benzoquinonediimines and that, in addition to direct covalent binding, further degradation of the peptide can be produced.


Assuntos
Iminas/química , Peptídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Sítios de Ligação , Cromatografia Líquida/métodos , Dermatite de Contato , Haptenos/química , Cinética , Modelos Moleculares , Estrutura Molecular , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo , Fatores de Tempo
11.
J Dermatol Sci ; 91(3): 239-249, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29857962

RESUMO

BACKGROUND: Skin acts as a protective barrier against direct contact with pollutants but inhalation and systemic exposure have indirect effect on keratinocytes. Exposure to diesel exhaust has been linked to increased oxidative stress. OBJECTIVE: To investigate global proteomic alterations in diesel particulate extract (DPE)/its vapor exposed skin keratinocytes. METHODS: We employed Tandem Mass Tag (TMT)-based proteomics to study effect of DPE/DPE vapor on primary skin keratinocytes. RESULTS: We observed an increased expression of oxidative stress response protein NRF2, upon chronic exposure of primary keratinocytes to DPE/its vapor which includes volatile components such as polycyclic aromatic hydrocarbons (PAHs). Mass spectrometry-based quantitative proteomics led to identification 4490 proteins of which 201 and 374 proteins were significantly dysregulated (≥1.5 fold, p≤0.05) in each condition, respectively. Proteins involved in cellular processes such as cornification (cornifin A), wound healing (antileukoproteinase) and differentiation (suprabasin) were significantly downregulated in primary keratinocytes exposed to DPE/DPE vapor. These results were corroborated in 3D skin models chronically exposed to DPE/DPE vapor. Bioinformatics analyses indicate that DPE and its vapor affect distinct molecular processes in skin keratinocytes. Components of mitochondrial oxidative phosphorylation machinery were seen to be exclusively overexpressed upon chronic DPE vapor exposure. In addition, treatment with an antioxidant like vitamin E partially restores expression of proteins altered upon exposure to DPE/DPE vapor. CONCLUSIONS: Our study highlights distinct adverse effects of chronic exposure to DPE/DPE vapor on skin keratinocytes and the potential role of vitamin E in alleviating adverse effects of environmental pollution.


Assuntos
Queratinócitos/efeitos dos fármacos , Material Particulado/toxicidade , Proteoma/efeitos dos fármacos , Pele/efeitos dos fármacos , Emissões de Veículos/toxicidade , Antioxidantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Mapas de Interação de Proteínas , Proteoma/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Espectrometria de Massas em Tandem , Fatores de Tempo , Vitamina E/farmacologia
13.
Arch Dermatol Res ; 308(9): 631-642, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27600510

RESUMO

The study aimed at detecting differentially expressed proteins in the stratum corneum of dandruff versus non-dandruff scalps to better understand dandruff aetiology. iTRAQ-based quantitative proteomic analysis revealed a total of 68 differentially expressed biomarkers. A detailed analysis of their known physiological functions provided new insights into the affected metabolic pathways of a dandruff scalp. Dandruff scalp showed (1) profound changes in the expression and maturation of structural and epidermal differentiation related proteins, that are responsible for the integrity of the skin, (2) altered relevant factors that regulate skin hydration, and (3) an imbalanced physiological protease-protease inhibitor ratio. Stratum corneum proteins with antimicrobial activity, mainly those derived from sweat and sebaceous glands were also found modified. Comparing our data with those reported for atopic dermatitis revealed that about 50 % of the differentially expressed proteins in the superficial layers of the stratum corneum from dandruff and atopic dermatitis are identical.


Assuntos
Dermatite Atópica/metabolismo , Dermatite Seborreica/etiologia , Dermatite Seborreica/metabolismo , Epiderme/metabolismo , Couro Cabeludo/metabolismo , Adulto , Diferenciação Celular , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica/métodos , Pele/metabolismo , Espectrometria de Massas em Tandem , Adulto Jovem
14.
OMICS ; 20(11): 615-626, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27828771

RESUMO

Cigarette smoking has been associated with multiple negative effects on human skin. Long-term physiological effects of cigarette smoke are through chronic and not acute exposure. Molecular alterations due to chronic exposure to cigarette smoke remain unclear. Primary human skin keratinocytes chronically exposed to cigarette smoke condensate (CSC) showed a decreased wound-healing capacity with an increased expression of NRF2 and MMP9. Using quantitative proteomics, we identified 4728 proteins, of which 105 proteins were overexpressed (≥2-fold) and 41 proteins were downregulated (≤2-fold) in primary skin keratinocytes chronically exposed to CSC. We observed an alteration in the expression of several proteins involved in maintenance of epithelial barrier integrity, including keratin 80 (5.3 fold, p value 2.5 × 10-7), cystatin A (3.6-fold, p value 3.2 × 10-3), and periplakin (2.4-fold, p value 1.2 × 10-8). Increased expression of proteins associated with skin hydration, including caspase 14 (2.2-fold, p value 4.7 × 10-2) and filaggrin (3.6-fold, p value 5.4 × 10-7), was also observed. In addition, we report differential expression of several proteins, including adipogenesis regulatory factor (2.5-fold, p value 1.3 × 10-3) and histone H1.0 (2.5-fold, p value 6.3 × 10-3) that have not been reported earlier. Bioinformatics analyses demonstrated that proteins differentially expressed in response to CSC are largely related to oxidative stress, maintenance of skin integrity, and anti-inflammatory responses. Importantly, treatment with vitamin E, a widely used antioxidant, could partially rescue adverse effects of CSC exposure in primary skin keratinocytes. The utility of antioxidant-based new dermatological formulations in delaying or preventing skin aging and oxidative damages caused by chronic cigarette smoke exposure warrants further clinical investigations and multi-omics research.


Assuntos
Queratinócitos/metabolismo , Nicotiana/efeitos adversos , Proteínas/metabolismo , Pele/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Linhagem Celular , Células Cultivadas , Proteínas Filagrinas , Expressão Gênica , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteômica , Reepitelização/efeitos dos fármacos , Pele/citologia , Vitamina E/farmacologia , Vitamina E/uso terapêutico
15.
Food Chem ; 149: 114-20, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24295684

RESUMO

Encapsulation of polyphenols can be used for improving their stability and targeting. We present here a spectrophotometric method to probe the micellar solubilisation and inter-micellar exchange of polyphenols using the 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free radical as a visible probe. Our method relies on the partitioning of DPPH· into micelles, on the reduction of DPPH· by polyphenols, and on the change in absorbance of DPPH· when reduced/oxidised. Hence, an absorbance drop at 528 nm gives evidence of the co-localisation of polyphenols and DPPH· in micelles. Using catechin and sodium dodecyl sulfate (SDS) as model molecules, we have shown that the reduction stoichiometry increases up to the critical micelle concentration (CMC) of SDS, where it reaches a plateau: this is due to the solubilisation of catechin in pre-micellar aggregates and then in micelles. The initial rate of reduction increases with increasing SDS concentration up to the CMC and then decreases due to a dilution effect.


Assuntos
Compostos de Bifenilo/química , Radicais Livres/química , Picratos/química , Polifenóis/química , Espectrofotometria/métodos , Micelas , Solubilidade
16.
J Invest Dermatol ; 129(2): 449-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18719606

RESUMO

The family of transglutaminases (TGase) is known to be involved in terminal differentiation processes in the epidermis. These enzymes contribute also to the physical resistance and the preservation of the hair follicle structure. Our particular interest in hair fiber keratinization led us to focus on the TGase 3, exclusively expressed in the hair shaft. To date its function is still to be elucidated, thus we have developed a multidisciplinary approach in order to define the localization, activity, and substrates of TGase 3. The hair fiber is characterized by the expression of specific proteins essentially consisting of keratin intermediate filaments and keratin-associated proteins (KAPs), which are essential for the formation of a rigid hair shaft through their extensive disulfide cross-links. Gel electrophoresis combined with mass spectrometry experiments revealed an unexpected protein migration pattern, suggesting the existence of covalent interactions other than disulfide bonds. Western blot and amino-acid analysis revealed the presence of gamma-glutamyl-epsilon-lysine isopeptide linkages that could constitute this second covalent network. Our hypothesis is that TGase 3-driven specific isopeptide bonds between intermediate filaments and KAPs participate to the progressive scaffolding of the hair shaft.


Assuntos
Folículo Piloso/enzimologia , Cabelo/enzimologia , Transglutaminases/metabolismo , Aminoácidos/metabolismo , Biópsia , Reagentes de Ligações Cruzadas/metabolismo , Eletroforese em Gel Bidimensional , Folículo Piloso/citologia , Humanos , Filamentos Intermediários/metabolismo , Queratinas/metabolismo , Couro Cabeludo/citologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Proteomics ; 3(2): 217-23, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12601814

RESUMO

Initiation of transcription of protein-encoding genes by RNA polymerase II was thought to require the transcription factor II D (TF(II)D), a complex comprising the TATA binding protein (TBP) and TBP-associated factors. However, another multiprotein complex isolated more recently and called TFTC (TBP-free TAF(II )containing complex), was shown to mediate initiation of RNA polymerase II (Pol II) transcription in the absence of TF(II)D as well as specific acetylation of histone H3 in a nucleosomal context. Several subunits of the TFTC complex were already identified using classical methods such as Edman based microsequencing and Western blot analysis. In this article we present a mass spectrometry based proteomic approach to confirm previous results and to identify other possible subunits of the TFTC complex. The TFTC complex was separated on one-dimensional sodium dodecyl sulfate polyacrylamide electrophoresis and analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and peptide mass fingerprinting. Identifications were realized after databank searches. This new characterization of TFTC complex confirmed the presence of already described subunits (TRRAP, GCN5, SAP130/KIA0017, TAF(II)150, TAF(II)135, TAF(II)100, TAF(II)80, TAF(II)20, SPT3 and PAF65beta). Moreover, a good coverage of these sequences was obtained. Interestingly, TAF(II)32 and PAF6alpha were also determined as potential novel subunits of TFTC. These results together show the suitability and the great potential of this method and offer new perspectives in fundamental studies of transcription factor complexes.


Assuntos
Proteína de Ligação a TATA-Box/química , Fatores de Transcrição TFII/química , Western Blotting , Bases de Dados como Assunto , Eletroforese em Gel de Poliacrilamida , Células HeLa , Histonas/metabolismo , Humanos , Espectrometria de Massas , Testes de Precipitina , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/química , Fatores de Transcrição TFII/metabolismo
18.
J Biol Chem ; 279(12): 10872-82, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14701819

RESUMO

Annexin 2 belongs to the annexin family of proteins that bind to phospholipid membranes in a Ca(2+)-dependent manner. Here we show that, under mild acidic conditions, annexin 2 binds to and aggregates membranes containing anionic phospholipids, a fact that questions the mechanism of its interaction with membranes via Ca(2+) bridges only. The H(+) sensitivity of annexin 2-mediated aggregation is modulated by lipid composition (i.e. cholesterol content). Cryo-electron microscopy of aggregated liposomes revealed that both the monomeric and the tetrameric forms of the protein form bridges between the liposomes at acidic pH. Monomeric annexin 2 induced two different organizations of the membrane junctions. The first resembled that obtained at pH 7 in the presence of Ca(2+). For the tetramer, the arrangement was different. These bridges seemed more flexible than the Ca(2+)-mediated junctions allowing the invagination of membranes. Time-resolved fluorescence analysis at mild acidic pH and the measurement of Stokes radius revealed that the protein undergoes conformational changes similar to those induced by Ca(2+). Labeling with the lipophilic probe 3-(trifluoromethyl)-3-(m-[(125)I]iodophenyl)diazirine indicated that the protein has access to the hydrophobic part of the membrane at both acidic pH in the absence of Ca(2+) and at neutral pH in the presence of Ca(2+). Models for the membrane interactions of annexin 2 at neutral pH in the presence of Ca(2+) and at acidic pH are discussed.


Assuntos
Anexina A2/metabolismo , Lipídeos de Membrana/metabolismo , Anexina A2/química , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Fosfolipídeos/metabolismo , Conformação Proteica , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Biochemistry ; 42(17): 4909-17, 2003 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-12718532

RESUMO

E6 is a viral oncoprotein implicated in cervical cancers, produced by high-risk human papillomaviruses (HPVs). Structural data concerning this protein are scarce due to the difficulty of producing recombinant E6. Recently, we described the expression and purification of a stable, folded, and biologically active HPV16 E6 mutant called E6 6C/6S. Here, we analyzed the domain substructure of this mutated E6. Nonspecific proteolysis of full-length E6 6C/6S (158 residues) yielded N-terminal and C-terminal fragments encompassing residues 7-83 and 87-158, respectively. The C-terminal fragment of residues 87-158 was cloned, overexpressed, and purified at concentrations as high as 1 mM. The purified domain retains the selective four-way DNA junction recognition activity of the full-length E6 protein. Using UV absorption, UV fluorescence, circular dichroism, and nuclear magnetic resonance, we show that the peptide is primarily monomeric and folded with equal proportions of alpha-helix and beta-sheet secondary structure.


Assuntos
Proteínas Oncogênicas Virais/química , Papillomaviridae , Proteínas Repressoras , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sondas de DNA , DNA Viral/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/isolamento & purificação , Espectroscopia de Ressonância Magnética , Peso Molecular , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/isolamento & purificação , Fragmentos de Peptídeos/química , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
20.
Mol Cell Proteomics ; 2(8): 494-505, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12832458

RESUMO

We have applied proteomic analysis to the degeneration of photoreceptors. In the rd1 mouse, a recessive mutation in the PDE6B gene leads to rapid loss of rods through apoptosis. By 5 wk postnatal, virtually all rod photoreceptors have degenerated, leaving one row of cones that degenerates secondarily. In order to assess comparative protein expression, proteins extracted from whole retina were resolved on a two-dimensional gel and identified by mass spectrometry combined with database screening. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry coupled to peptide mass fingerprinting was sufficient to identify most of the proteins, the remaining being identified with additional sequence information obtained by nano-electrospray ionization tandem mass spectrometry or liquid chromatography tandem mass spectrometry. The study revealed 212 spots, grouped into 109 different proteins. Differential analysis showed loss of proteins involved in the rod-specific phototransduction cascade, as well as induction of proteins from the crystallin family, in response to retinal degeneration. Identification of such pathways may contribute to new therapeutic approaches.


Assuntos
Cristalinas/biossíntese , Retina/metabolismo , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Sequência de Aminoácidos , Animais , Cristalinas/genética , Cristalinas/isolamento & purificação , Eletroforese em Gel Bidimensional , Genes Recessivos , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Dados de Sequência Molecular , Células Fotorreceptoras de Vertebrados/metabolismo , Proteômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA