Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39007397

RESUMO

Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited cell loss, per degenerative diseases, are undefined. As stem/progenitor cell responses scale to injury levels, understanding how the extent and specificity of cell loss impact regenerative processes is important. Here, transgenic zebrafish enabling selective retinal ganglion cell (RGC) ablation were used to identify genes that regulate RGC regeneration. A single cell multiomics-informed screen of 101 genes identified seven knockouts that inhibited and eleven that promoted RGC regeneration. Surprisingly, 35 of 36 genes known/implicated as being required for regeneration following widespread retinal damage were not required for RGC regeneration, and seven even enhanced regeneration kinetics, including proneural factors neurog1, olig2, and ascl1a. Mechanistic analyses revealed ascl1a disruption increased the propensity of progenitor cells to produce RGCs; i.e., increased "fate bias". These data demonstrate plasticity in how Müller glia can convert to a stem-like state and context-specificity in how genes function during regeneration. Increased understanding of how the regeneration of disease-relevant cell types is specifically controlled will support the development of disease-tailored regenerative therapeutics.

2.
PLoS Genet ; 19(10): e1010905, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819938

RESUMO

Retinal Müller glia (MG) can act as stem-like cells to generate new neurons in both zebrafish and mice. In zebrafish, retinal regeneration is innate and robust, resulting in the replacement of lost neurons and restoration of visual function. In mice, exogenous stimulation of MG is required to reveal a dormant and, to date, limited regenerative capacity. Zebrafish studies have been key in revealing factors that promote regenerative responses in the mammalian eye. Increased understanding of how the regenerative potential of MG is regulated in zebrafish may therefore aid efforts to promote retinal repair therapeutically. Developmental signaling pathways are known to coordinate regeneration following widespread retinal cell loss. In contrast, less is known about how regeneration is regulated in the context of retinal degenerative disease, i.e., following the loss of specific retinal cell types. To address this knowledge gap, we compared transcriptomic responses underlying regeneration following targeted loss of rod photoreceptors or bipolar cells. In total, 2,531 differentially expressed genes (DEGs) were identified, with the majority being paradigm specific, including during early MG activation phases, suggesting the nature of the injury/cell loss informs the regenerative process from initiation onward. For example, early modulation of Notch signaling was implicated in the rod but not bipolar cell ablation paradigm and components of JAK/STAT signaling were implicated in both paradigms. To examine candidate gene roles in rod cell regeneration, including several immune-related factors, CRISPR/Cas9 was used to create G0 mutant larvae (i.e., "crispants"). Rod cell regeneration was inhibited in stat3 crispants, while mutating stat5a/b, c7b and txn accelerated rod regeneration kinetics. These data support emerging evidence that discrete responses follow from selective retinal cell loss and that the immune system plays a key role in regulating "fate-biased" regenerative processes.


Assuntos
Transcriptoma , Peixe-Zebra , Animais , Camundongos , Peixe-Zebra/genética , Animais Geneticamente Modificados , Transcriptoma/genética , Retina/metabolismo , Neurônios , Proliferação de Células , Mamíferos
3.
bioRxiv ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38045256

RESUMO

Many genes are known to regulate retinal regeneration following widespread tissue damage. Conversely, genes controlling regeneration following limited retinal cell loss, akin to disease conditions, are undefined. Combining a novel retinal ganglion cell (RGC) ablation-based glaucoma model, single cell omics, and rapid CRISPR/Cas9-based knockout methods to screen 100 genes, we identified 18 effectors of RGC regeneration kinetics. Surprisingly, 32 of 33 previously known/implicated regulators of retinal tissue regeneration were not required for RGC replacement; 7 knockouts accelerated regeneration, including sox2, olig2, and ascl1a . Mechanistic analyses revealed loss of ascl1a increased "fate bias", the propensity of progenitors to produce RGCs. These data demonstrate plasticity and context-specificity in how genes function to control regeneration, insights that could help to advance disease-tailored therapeutics for replacing lost retinal cells. One sentence summary: We discovered eighteen genes that regulate the regeneration of retinal ganglion cells in zebrafish.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA