Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): 1831-1843.e7, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38604168

RESUMO

The coordination of neural activity across brain areas during a specific behavior is often interpreted as neural communication involved in controlling the behavior. However, whether information relevant to the behavior is actually transferred between areas is often untested. Here, we used information-theoretic tools to quantify how motor cortex and striatum encode and exchange behaviorally relevant information about specific reach-to-grasp movement features during skill learning in rats. We found a temporal shift in the encoding of behaviorally relevant information during skill learning, as well as a reversal in the primary direction of behaviorally relevant information flow, from cortex-to-striatum during naive movements to striatum-to-cortex during skilled movements. Standard analytical methods that quantify the evolution of overall neural activity during learning-such as changes in neural signal amplitude or the overall exchange of information between areas-failed to capture these behaviorally relevant information dynamics. Using these standard methods, we instead found a consistent coactivation of overall neural signals during movement production and a bidirectional increase in overall information propagation between areas during learning. Our results show that skill learning is achieved through a transformation in how behaviorally relevant information is routed across cortical and subcortical brain areas and that isolating the components of neural activity relevant to and informative about behavior is critical to uncover directional interactions within a coactive and coordinated network.


Assuntos
Corpo Estriado , Aprendizagem , Córtex Motor , Destreza Motora , Ratos Long-Evans , Animais , Córtex Motor/fisiologia , Aprendizagem/fisiologia , Ratos , Corpo Estriado/fisiologia , Masculino , Destreza Motora/fisiologia
2.
Cell Rep ; 43(6): 114244, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796851

RESUMO

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.


Assuntos
Aprendizagem , Neurônios , Córtex Somatossensorial , Animais , Córtex Somatossensorial/fisiologia , Aprendizagem/fisiologia , Camundongos , Neurônios/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Comportamento Animal/fisiologia , Feminino
3.
bioRxiv ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38979146

RESUMO

Decision-makers often process new evidence selectively, depending on their current beliefs about the world. We asked whether such confirmation biases result from biases in the encoding of sensory evidence in the brain, or alternatively in the utilization of encoded evidence for behavior. Human participants estimated the source of a sequence of visual-spatial evidence samples while we measured cortical population activity with magnetoencephalography (MEG). Halfway through the sequence, participants were prompted to judge the more likely source category. Their processing of subsequent evidence depended on its consistency with the previously chosen category, but the encoding of evidence in cortical activity did not. Instead, the encoded evidence in parietal and primary visual cortex contributed less to the estimation report when that evidence was inconsistent with the previous choice. We conclude that confirmation bias originates from the way in which decision-makers utilize information encoded in the brain. This provides room for deliberative control.

4.
bioRxiv ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38895197

RESUMO

Shannon Information theory has long been a tool of choice to measure empirically how populations of neurons in the brain encode information about cognitive variables. Recently, Partial Information Decomposition (PID) has emerged as principled way to break down this information into components identifying not only the unique information carried by each neuron, but also whether relationships between neurons generate synergistic or redundant information. While it has been long recognized that Shannon information measures on neural activity suffer from a (mostly upward) limited sampling estimation bias, this issue has largely been ignored in the burgeoning field of PID analysis of neural activity. We used simulations to investigate the limited sampling bias of PID computed from discrete probabilities (suited to describe neural spiking activity). We found that PID suffers from a large bias that is uneven across components, with synergy by far the most biased. Using approximate analytical expansions, we found that the bias of synergy increases quadratically with the number of discrete responses of each neuron, whereas the bias of unique and redundant information increase only linearly or sub-linearly. Based on the understanding of the PID bias properties, we developed simple yet effective procedures that correct for the bias effectively, and that improve greatly the PID estimation with respect to current state-of-the-art procedures. We apply these PID bias correction procedures to datasets of 53117 pairs neurons in auditory cortex, posterior parietal cortex and hippocampus of mice performing cognitive tasks, deriving precise estimates and bounds of how synergy and redundancy vary across these brain regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA