Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Rev Genet ; 22(1): 38-58, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32958894

RESUMO

The Trithorax group (TrxG) of proteins is a large family of epigenetic regulators that form multiprotein complexes to counteract repressive developmental gene expression programmes established by the Polycomb group of proteins and to promote and maintain an active state of gene expression. Recent studies are providing new insights into how two crucial families of the TrxG - the COMPASS family of histone H3 lysine 4 methyltransferases and the SWI/SNF family of chromatin remodelling complexes - regulate gene expression and developmental programmes, and how misregulation of their activities through genetic abnormalities leads to pathologies such as developmental disorders and malignancies.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Crescimento e Desenvolvimento/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias/genética , Proteínas do Grupo Polycomb/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Modelos Moleculares , Complexos Multiproteicos , Proteínas do Grupo Polycomb/genética , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
2.
Proc Natl Acad Sci U S A ; 119(19): e2118385119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500115

RESUMO

Embryonic stem cells (ESCs) are defined by their ability to self-renew and the potential to differentiate into all tissues of the developing organism. We previously demonstrated that deleting the catalytic SET domain of the Set1A/complex of proteins associated with SET1 histone methyltransferase (Set1A/COMPASS) in mouse ESCs does not impair their viability or ability to self-renew; however, it leads to defects in differentiation. The precise mechanisms by which Set1A executes these functions remain to be elucidated. In this study, we demonstrate that mice lacking the SET domain of Set1A are embryonic lethal at a stage that is unique from null alleles. To gain insight into Set1A function in regulating pluripotency, we conducted a CRISPR/Cas9-mediated dropout screen and identified the MOZ/MORF (monocytic leukaemia zinc finger protein/monocytic leukaemia zinc finger protein-related factor) and HBO1 (HAT bound to ORC1) acetyltransferase complex member ING5 as a synthetic perturbation to Set1A. The loss of Ing5 in Set1AΔSET mouse ESCs decreases the fitness of these cells, and the simultaneous loss of ING5 and in Set1AΔSET leads to up-regulation of differentiation-associated genes. Taken together, our results point toward Set1A/COMPASS and ING5 as potential coregulators of the self-renewal and differentiation status of ESCs.


Assuntos
Histonas , Células-Tronco Embrionárias Murinas , Animais , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Mutações Sintéticas Letais , Proteínas Supressoras de Tumor
3.
Development ; 143(15): 2853-61, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27385017

RESUMO

Myocardin-related transcription factors (MRTFs) play a central role in the regulation of actin expression and cytoskeletal dynamics. Stimuli that promote actin polymerization allow for shuttling of MRTFs to the nucleus where they activate serum response factor (SRF), a regulator of actin and other cytoskeletal protein genes. SRF is an essential regulator of skeletal muscle differentiation and numerous components of the muscle sarcomere, but the potential involvement of MRTFs in skeletal muscle development has not been examined. We explored the role of MRTFs in muscle development in vivo by generating mutant mice harboring a skeletal muscle-specific deletion of MRTF-B and a global deletion of MRTF-A. These double knockout (dKO) mice were able to form sarcomeres during embryogenesis. However, the sarcomeres were abnormally small and disorganized, causing skeletal muscle hypoplasia and perinatal lethality. Transcriptome analysis demonstrated dramatic dysregulation of actin genes in MRTF dKO mice, highlighting the importance of MRTFs in actin cycling and myofibrillogenesis. MRTFs were also shown to be necessary for the survival of skeletal myoblasts and for the efficient formation of intact myotubes. Our findings reveal a central role for MRTFs in sarcomere formation during skeletal muscle development and point to the potential involvement of these transcriptional co-activators in skeletal myopathies.


Assuntos
Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Actinas/metabolismo , Animais , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Transativadores/genética , Fatores de Transcrição/genética
4.
Dev Biol ; 406(2): 109-16, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26386146

RESUMO

Myocardin-Related Transcription Factors A and B (MRTF-A and MRTF-B) are highly homologous proteins that function as powerful coactivators of serum response factor (SRF), a ubiquitously expressed transcription factor essential for cardiac development. The SRF/MRTF complex binds to CArG boxes found in the control regions of genes that regulate cytoskeletal dynamics and muscle contraction, among other processes. While SRF is required for heart development and function, the role of MRTFs in the developing or adult heart has not been explored. Through cardiac-specific deletion of MRTF alleles in mice, we show that either MRTF-A or MRTF-B is dispensable for cardiac development and function, whereas deletion of both MRTF-A and MRTF-B causes a spectrum of structural and functional cardiac abnormalities. Defects observed in MRTF-A/B null mice ranged from reduced cardiac contractility and adult onset heart failure to neonatal lethality accompanied by sarcomere disarray. RNA-seq analysis on neonatal hearts identified the most altered pathways in MRTF double knockout hearts as being involved in cytoskeletal organization. Together, these findings demonstrate redundant but essential roles of the MRTFs in maintenance of cardiac structure and function and as indispensible links in cardiac cytoskeletal gene regulatory networks.


Assuntos
Redes Reguladoras de Genes/fisiologia , Coração/embriologia , Morfogênese/fisiologia , Sarcômeros/fisiologia , Fator de Resposta Sérica/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Citoesqueleto/fisiologia , Ecocardiografia , Coração/fisiologia , Técnicas Histológicas , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transativadores/deficiência , Fatores de Transcrição/deficiência
5.
Nat Commun ; 12(1): 690, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514739

RESUMO

Lamins and transmembrane proteins within the nuclear envelope regulate nuclear structure and chromatin organization. Nuclear envelope transmembrane protein 39 (Net39) is a muscle nuclear envelope protein whose functions in vivo have not been explored. We show that mice lacking Net39 succumb to severe myopathy and juvenile lethality, with concomitant disruption in nuclear integrity, chromatin accessibility, gene expression, and metabolism. These abnormalities resemble those of Emery-Dreifuss muscular dystrophy (EDMD), caused by mutations in A-type lamins (LMNA) and other genes, like Emerin (EMD). We observe that Net39 is downregulated in EDMD patients, implicating Net39 in the pathogenesis of this disorder. Our findings highlight the role of Net39 at the nuclear envelope in maintaining muscle chromatin organization, gene expression and function, and its potential contribution to the molecular etiology of EDMD.


Assuntos
Proteínas de Membrana/deficiência , Músculo Esquelético/patologia , Distrofia Muscular de Emery-Dreifuss/genética , Membrana Nuclear/patologia , Proteínas Nucleares/metabolismo , Fosfatidato Fosfatase/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Sequenciamento de Cromatina por Imunoprecipitação , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Lamina Tipo A/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/citologia , Distrofia Muscular de Emery-Dreifuss/patologia , Proteínas Nucleares/genética , Fosfatidato Fosfatase/genética , RNA-Seq , Estudos Retrospectivos
6.
J Clin Invest ; 125(4): 1569-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25774500

RESUMO

Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy.


Assuntos
Fatores de Transcrição MEF2/fisiologia , Proteínas dos Microfilamentos/deficiência , Miopatias da Nemalina/genética , Actinas/química , Animais , Células COS , Chlorocebus aethiops , Sequência Consenso , Creatina Quinase Forma MM/genética , Insuficiência de Crescimento/genética , Insuficiência de Crescimento/patologia , Insuficiência de Crescimento/terapia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Terapia Genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/fisiologia , Contração Muscular , Proteínas Musculares/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Miopatias da Nemalina/metabolismo , Especificidade de Órgãos , Polimerização , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/metabolismo , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Fator de Resposta Sérica/fisiologia , Transativadores/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA