Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Plant Foods Hum Nutr ; 77(3): 467-473, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35947287

RESUMO

Silver linden (Tilia tomentosa Moench, TtM) flowers possess several health-promoting properties, especially at the neurological level, such as intestinal relaxation activity associated with specific flavonols, particularly quercetin and kaempferol derivatives. However, such molecules are susceptible to degradation upon different triggers like heat, light and extreme pH values. To overcome the scarce stability of TtM flowers bioactive molecules and make them suitable for developing functional food and supplements, we applied microencapsulation. Spray-drying microencapsulation of TtM flowers extract was performed using three starch-derived wall materials: maltodextrin 12 DE (MD12) and 19 DE (MD19), and OSA-modified starch (OSA-S). The stability of total phenols, flavanols, and antioxidant capacity was monitored for 70 days under accelerated stress conditions (40 °C/70% RH) by HPLC and spectrophotometric methods, and the intestinal contractile activity was tested in a murine model. In comparison to MD12 and MD19, OSA-S stood out for the higher encapsulation efficiency of quercetin and kaempferol glycosides (+ 36-47% compared to MD12 and + 18-24% compared to MD19) and stability thereof (half-life on average + 30% compared to MD12 and + 51% compared to MD19). The intestinal contractile activity of OAS-S powders resulted comparable to the original extract, indicating that flavonols were biologically active and accessible. Our results underly the potential advantages of OSA-S encapsulated formulation as a functional ingredient for the development of nutraceutical products.


Assuntos
Tilia , Animais , Camundongos , Flores/química , Quempferóis/análise , Extratos Vegetais/química , Quercetina/análise , Amido/química , Tilia/química
2.
FASEB J ; 34(4): 5512-5524, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32086846

RESUMO

The present study was designed to examine the role of enteric glial cells (EGCs) in colonic neuromuscular dysfunctions in a mouse model of high-fat diet (HFD)-induced obesity. C57BL/6J mice were fed with HFD or standard diet (SD) for 1, 2, or 8 weeks. Colonic interleukin (IL)-1ß, IL-6, and malondialdehyde (MDA) levels were measured. Expression of occludin in colonic tissues was examined by western blot. Substance P (SP), S100ß, GFAP, and phosphorylated mitogen-activated protein kinase 1 (pERK) were assessed in whole mount specimens of colonic plexus by immunohistochemistry. Colonic tachykininergic contractions, elicited by electrical stimulation or exogenous SP, were recorded in the presence or absence of fluorocitrate (FC). To mimic exposure to HFD, cultured EGCs were incubated with palmitate (PA) and/or lipopolysaccharide (LPS). SP and IL-1ß levels were assayed in the culture medium by ELISA. HFD mice displayed an increase in colonic IL-1ß and MDA, and a reduction of occludin at week 2. These changes occurred to a greater extent at week 8. In vitro electrically evoked tachykininergic contractions were enhanced in HFD mice after 2 or 8 weeks, and they were blunted by FC. Colonic IL-6 levels as well as substance P and S100ß density in myenteric ganglia of HFD mice were increased at week 8, but not at week 1 or 2. In cultured EGCs, co-incubation with palmitate plus LPS led to a significant increase in both SP and IL-1ß release. HFD-induced obesity is characterized by a hyperactivation of EGCs and is involved in the development of enteric motor disorders through an increase in tachykininergic activity and release of pro-inflammatory mediators.


Assuntos
Doenças do Colo/patologia , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Sistema Nervoso Entérico/patologia , Motilidade Gastrointestinal , Neuroglia/patologia , Obesidade/complicações , Animais , Doenças do Colo/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562721

RESUMO

The complex bidirectional communication system existing between the gastrointestinal tract and the brain initially termed the "gut-brain axis" and renamed the "microbiota-gut-brain axis", considering the pivotal role of gut microbiota in sustaining local and systemic homeostasis, has a fundamental role in the pathogenesis of Inflammatory Bowel Disease (IBD). The integration of signals deriving from the host neuronal, immune, and endocrine systems with signals deriving from the microbiota may influence the development of the local inflammatory injury and impacts also more distal brain regions, underlying the psychophysiological vulnerability of IBD patients. Mood disorders and increased response to stress are frequently associated with IBD and may affect the disease recurrence and severity, thus requiring an appropriate therapeutic approach in addition to conventional anti-inflammatory treatments. This review highlights the more recent evidence suggesting that alterations of the microbiota-gut-brain bidirectional communication axis may concur to IBD pathogenesis and sustain the development of both local and CNS symptoms. The participation of the main microbial-derived metabolites, also defined as "postbiotics", such as bile acids, short-chain fatty acids, and tryptophan metabolites in the development of IBD-associated gut and brain dysfunction will be discussed. The last section covers a critical evaluation of the main clinical evidence pointing to the microbiome-based therapeutic approaches for the treatment of IBD-related gastrointestinal and neuropsychiatric symptoms.


Assuntos
Bactérias/química , Encéfalo/metabolismo , Trato Gastrointestinal/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Bactérias/imunologia , Ácidos e Sais Biliares/metabolismo , Disbiose , Ácidos Graxos Voláteis/metabolismo , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/psicologia , Índice de Gravidade de Doença , Triptofano/metabolismo
4.
Life Sci ; 301: 120562, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35487304

RESUMO

AIMS: Anomalies in dopaminergic machinery have been shown in inflammatory bowel disease (IBD) patients and preclinical models of IBD. Thus, we aimed to evaluate the impact of dextran sodium sulfate (DSS)-induced ileitis on enteric dopaminergic pathways. MATERIALS AND METHODS: Male C57/Bl6 mice (10 ± 2 weeks old) received 2% DSS in drinking water for 5 days and were then switched to regular drinking water for 3 days. To measure ileitis severity inflammatory cytokines (IL-1ß, TNFα, IL-6) levels were assessed. Changes in ileal muscle tension were isometrically recorded following: 1) cumulative addition of dopamine on basal tone (0.1-1000 µM); ii) 4-Hz electric field stimulation (EFS) in the presence of 30 µM dopamine with/without 10 µM SCH-23390 (dopamine D1 receptor (D1R) antagonist) or 10 µM sulpiride (D2R antagonist). Immunofluorescence distribution of the neuronal HuC/D protein, glial S100ß marker, D1R, and dopamine transporter (DAT) were determined in longitudinal-muscle-myenteric plexus whole-mounts (LMMPs) by confocal microscopy. D1R and D2R mRNA transcripts were evaluated by qRT-PCR. KEY FINDINGS: DSS caused an inflammatory process in the small intestine associated to dysmotility and altered barrier permeability, as suggested by decreased fecal output and enhanced stool water content. DSS treatment caused a significant increase of DAT and D1R myenteric immunoreactivity as well as of D1R and D2R mRNA levels, accompanied by a significant reduction of dopamine-mediated relaxation, involving primarily D1-like receptors. SIGNIFICANCE: Mouse ileitis affects enteric dopaminergic neurotransmission mainly involving D1R-mediated responses. These findings provide novel information on the participation of dopaminergic pathways in IBD-mediated neuromuscular dysfunction.


Assuntos
Água Potável , Ileíte , Doenças Inflamatórias Intestinais , Animais , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Dopamina , Antagonistas de Dopamina , Humanos , Ileíte/induzido quimicamente , Intestino Delgado/metabolismo , Masculino , Camundongos , RNA Mensageiro/genética , Receptores de Dopamina D1/metabolismo , Transmissão Sináptica/fisiologia
5.
Nutrients ; 13(10)2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34684506

RESUMO

Functional gastrointestinal disorders (FGIDs) are characterized by abdominal pain, bloating and bowel disturbances. FGID therapy is primarily symptomatic, including treatment with herbal remedies. Flower extract of Tilia tomentosa Moench (TtM) is occasionally used as an anti-spasmodic in popular medicine. Since its effect on intestinal response is unknown, we evaluated the influence of TtM extract on small intestine contractility. Ileal preparations from C57BL/6J mice were mounted in organ baths to assess changes in muscle tension, following addition of TtM extract (0.5-36 µg/mL) or a vehicle (ethanol). Changes in contractile response to receptor- and non-receptor-mediated stimuli were assessed in ileal preparations pretreated with 12 µg/mL TtM. Alterations in the enteric nervous system neuroglial network were analyzed by confocal immunofluorescence. Increasing addition of TtM induced a marked relaxation in ileal specimens compared to the vehicle. Pretreatment with TtM affected cholinergic and tachykininergic neuromuscular contractions as well as K+-induced smooth muscle depolarization. Following incubation with TtM, a significant reduction in non-adrenergic non-cholinergic-mediated relaxation sensitive to Nω-Nitro-L-arginine methyl ester hydrochloride (pan-nitric oxide synthase inhibitor) was found. In vitro incubation of intestinal specimens with TtM did not affect the myenteric plexus neuroglial network. Our findings show that TtM-induced intestinal relaxation is mediated by nitric oxide pathways, providing a pharmacological basis for the use of TtM in FGIDs.


Assuntos
Intestino Delgado/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tilia , Animais , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/fisiopatologia , Íleo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
6.
Biomedicines ; 9(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923250

RESUMO

Antidopaminergic gastrointestinal prokinetics are indeed commonly used to treat gastrointestinal motility disorders, although the precise role of dopaminergic transmission in the gut is still unclear. Since dopamine transporter (DAT) is involved in several brain disorders by modulating extracellular dopamine in the central nervous system, this study evaluated the impact of DAT genetic reduction on the morpho-functional integrity of mouse small intestine enteric nervous system (ENS). In DAT heterozygous (DAT+/-) and wild-type (DAT+/+) mice (14 ± 2 weeks) alterations in small intestinal contractility were evaluated by isometrical assessment of neuromuscular responses to receptor and non-receptor-mediated stimuli. Changes in ENS integrity were studied by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (). DAT genetic reduction resulted in a significant increase in dopamine-mediated effects, primarily via D1 receptor activation, as well as in reduced cholinergic response, sustained by tachykininergic and glutamatergic neurotransmission via NMDA receptors. These functional anomalies were associated to architectural changes in the neurochemical coding and S100ß immunoreactivity in small intestine myenteric plexus. Our study provides evidence that genetic-driven DAT defective activity determines anomalies in ENS architecture and neurochemical coding together with ileal dysmotility, highlighting the involvement of dopaminergic system in gut disorders, often associated to neurological conditions.

7.
Neurogastroenterol Motil ; 33(4): e14036, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33222337

RESUMO

BACKGROUND: Oxidized phospholipid derivatives (OxPAPCs) act as bacterial lipopolysaccharide (LPS)-like damage-associated molecular patterns. OxPAPCs dose-dependently exert pro- or anti-inflammatory effects by interacting with several cellular receptors, mainly Toll-like receptors 2 and 4. It is currently unknown whether OxPAPCs may affect enteric nervous system (ENS) functional and structural integrity. METHODS: Juvenile (3 weeks old) male C57Bl/6 mice were treated intraperitoneally with OxPAPCs, twice daily for 3 days. Changes in small intestinal contractility were evaluated by isometric neuromuscular responses to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity and serotonergic pathways were assessed by real-time PCR and confocal immunofluorescence microscopy in longitudinal muscle-myenteric plexus whole-mount preparations (LMMPs). Tissue levels of serotonin (5-HT), tryptophan, and kynurenine were measured by HPLC coupled to UV/fluorescent detection. KEY RESULTS: OxPAPC treatment induced enteric gliosis, loss of myenteric plexus neurons, and excitatory hypercontractility, and reduced nitrergic neurotransmission with no changes in nNOS+ neurons. Interestingly, these changes were associated with a higher functional response to 5-HT, altered immunoreactivity of 5-HT receptors and serotonin transporter (SERT) together with a marked decrease in 5-HT levels, shifting tryptophan metabolism toward kynurenine production. CONCLUSIONS AND INFERENCES: OxPAPC treatment disrupted structural and functional integrity of the ENS, affecting serotoninergic tone and 5-HT tissue levels toward a higher kynurenine content during adolescence, suggesting that changes in intestinal lipid metabolism toward oxidation can affect serotoninergic pathways, potentially increasing the risk of developing functional gastrointestinal disorders during critical stages of development.


Assuntos
Sistema Nervoso Entérico/fisiologia , Intestino Delgado/fisiologia , Fosfatidilcolinas/farmacologia , Receptores de Serotonina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Serotonina/fisiologia , Fatores Etários , Animais , Relação Dose-Resposta a Droga , Sistema Nervoso Entérico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Cultura de Órgãos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
Cells ; 9(4)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244316

RESUMO

Enteric glial cells (EGCs) influence nitric oxide (NO)- and adenosine diphosphate (ADP)- mediated signaling in the enteric nervous system (ENS). Since Toll-like receptor 4 (TLR4) participates to EGC homoeostasis, this study aimed to evaluate the possible involvement of EGCs in the alterations of the inhibitory neurotransmission in TLR4-/- mice. Ileal segments from male TLR4-/- and wild-type (WT) C57BL/6J mice were incubated with the gliotoxin fluoroacetate (FA). Alterations in ENS morphology and neurochemical coding were investigated by immunohistochemistry whereas neuromuscular responses were determined by recording non-adrenergic non-cholinergic (NANC) relaxations in isometrically suspended isolated ileal preparations. TLR4-/- ileal segments showed increased iNOS immunoreactivity associated with enhanced NANC relaxation, mediated by iNOS-derived NO and sensitive to P2Y1 inhibition. Treatment with FA diminished iNOS immunoreactivity and partially abolished NO- and ADP- mediated relaxation in the TLR4-/- mouse ileum, with no changes of P2Y1 and connexin-43 immunofluorescence distribution in the ENS. After FA treatment, S100ß and GFAP immunoreactivity in TLR4-/- myenteric plexus was reduced to levels comparable to those observed in WT. Our findings show the involvement of EGCs in the alterations of ENS architecture and in the increased purinergic and nitrergic-mediated relaxation, determining gut dysmotility in TLR4-/- mice.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Intestino Delgado/fisiopatologia , Neuroglia/metabolismo , Junção Neuromuscular/fisiopatologia , Receptor 4 Toll-Like/deficiência , Animais , Sistema Nervoso Entérico/efeitos dos fármacos , Fluoracetatos/farmacologia , Gliose/complicações , Gliose/patologia , Gliose/fisiopatologia , Íleo/efeitos dos fármacos , Íleo/patologia , Íleo/fisiopatologia , Intestino Delgado/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neuroglia/efeitos dos fármacos , Junção Neuromuscular/efeitos dos fármacos , Fenótipo , Receptores Purinérgicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
9.
Cells ; 9(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443525

RESUMO

The role played by adenosine A2B receptors (A2BRs) in the regulation of enteric glial cell (EGC) functions remains unclear. This study was aimed at investigating the involvement of A2BRs in the control of EGC functions in a model of obesity. C57BL/6 mice were fed with standard diet (SD) or high fat diet (HFD) for eight weeks. Colonic tachykininergic contractions were recorded in the presence of BAY60-6583 (A2BRs agonist), MRS1754 (A2BRs antagonist), and the gliotoxin fluorocitrate. Immunofluorescence distribution of HuC/D, S100ß, and A2BRs was assessed in whole mount preparations of colonic myenteric plexus. To mimic HFD, EGCs were incubated in vitro with palmitate (PA) and lipopolysaccharide (LPS), in the absence or in the presence of A2BR ligands. Toll-like receptor 4 (TLR4) expression was assessed by Western blot analysis. Interleukin-1ß (IL-1ß), substance P (SP), and glial cell derived neurotrophic factor (GDNF) release were determined by enzyme-linked immunosorbent assay (ELISA) assays. MRS1754 enhanced electrically evoked tachykininergic contractions of colonic preparations from HFD mice. BAY60-6583 decreased the evoked tachykininergic contractions, with higher efficacy in HFD mice. Such effects were blunted upon incubation with fluorocitrate. In in vitro experiments on EGCs, PA and LPS increased TLR4 expression as well as IL-1ß, GDNF, and SP release. Incubation with BAY60-6583 reduced TLR4 expression as well as IL-1ß, GDNF, and SP release. Such effects were blunted by MRS1754. The present results suggest that A2BRs, expressed on EGCs, participate in the modulation of enteric inflammation and altered tachykininergic responses associated with obesity, thus representing a potential therapeutic target.


Assuntos
Sistema Nervoso Entérico/patologia , Inflamação/patologia , Neuroglia/metabolismo , Obesidade/patologia , Receptor A2B de Adenosina/metabolismo , Taquicininas/metabolismo , Acetamidas/farmacologia , Aminopiridinas/farmacologia , Animais , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Citratos/farmacologia , Dieta Hiperlipídica , Comportamento Alimentar/efeitos dos fármacos , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Obesos , Modelos Biológicos , Fatores de Crescimento Neural/metabolismo , Neuroglia/efeitos dos fármacos , Ácido Palmítico/farmacologia , Purinas/farmacologia , Proteínas S100/metabolismo , Substância P/metabolismo , Receptor 4 Toll-Like/metabolismo
10.
PLoS One ; 14(2): e0212856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794676

RESUMO

Antibiotic use during adolescence may result in dysbiosis-induced neuronal vulnerability both in the enteric nervous system (ENS) and central nervous system (CNS) contributing to the onset of chronic gastrointestinal disorders, such as irritable bowel syndrome (IBS), showing significant psychiatric comorbidity. Intestinal microbiota alterations during adolescence influence the expression of molecular factors involved in neuronal development in both the ENS and CNS. In this study, we have evaluated the expression of brain-derived neurotrophic factor (BDNF) and its high-affinity receptor tropomyosin-related kinase B (TrkB) in juvenile mice ENS and CNS, after a 2-week antibiotic (ABX) treatment. In both mucosa and mucosa-deprived whole-wall small intestine segments of ABX-treated animals, BDNF and TrKB mRNA and protein levels significantly increased. In longitudinal muscle-myenteric plexus preparations of ABX-treated mice the percentage of myenteric neurons staining for BDNF and TrkB was significantly higher than in controls. After ABX treatment, a consistent population of BDNF- and TrkB-immunoreactive neurons costained with SP and CGRP, suggesting up-regulation of BDNF signaling in both motor and sensory myenteric neurons. BDNF and TrkB protein levels were downregulated in the hippocampus and remained unchanged in the prefrontal cortex of ABX-treated animals. Immunostaining for BDNF and TrkB decreased in the hippocampus CA3 and dentate gyrus subregions, respectively, and remained unchanged in the prefrontal cortex. These data suggest that dysbiosis differentially influences the expression of BDNF-TrkB in the juvenile mice ENS and CNS. Such changes may potentially contribute later to the development of functional gut disorders, such as IBS, showing psychiatric comorbidity.


Assuntos
Antibacterianos/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/metabolismo , Disbiose/metabolismo , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glicoproteínas de Membrana/biossíntese , Proteínas Tirosina Quinases/biossíntese , Animais , Antibacterianos/farmacologia , Encéfalo/patologia , Disbiose/induzido quimicamente , Disbiose/patologia , Sistema Nervoso Entérico/patologia , Síndrome do Intestino Irritável/induzido quimicamente , Síndrome do Intestino Irritável/metabolismo , Síndrome do Intestino Irritável/patologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Transdução de Sinais/efeitos dos fármacos
11.
Front Pharmacol ; 8: 350, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28642706

RESUMO

Objective: Toll-like receptors (TLRs) play a pivotal role in the homeostatic microflora-host crosstalk. TLR4-mediated modulation of both motility and enteric neuronal survival has been reported mainly for colon with limited information on the role of TLR4 in tuning structural and functional integrity of enteric nervous system (ENS) and in controlling small bowel motility. Methods: Male TLR4 knockout (TLR4-/-, 9 ± 1 weeks old) and sex- and age-matched wild-type (WT) C57BL/6J mice were used for the experiments. Alterations in ENS morphology and neurochemical code were assessed by immunohistochemistry whereas neuromuscular function was evaluated by isometric mechanical activity of ileal preparations following receptor and non-receptor-mediated stimuli and by gastrointestinal transit. Results: The absence of TLR4 induced gliosis and reduced the total number of neurons, mainly nNOS+ neurons, in ileal myenteric plexus. Furthermore, a lower cholinergic excitatory response with an increased inhibitory neurotransmission was found together with a delayed gastrointestinal transit. These changes were dependent on increased ileal non-adrenergic non-cholinergic (NANC) relaxations mediated by a complex neuronal-glia signaling constituted by P2X7 and P2Y1 receptors, and NO produced by nNOS and iNOS. Conclusion: We provide novel evidence that TLR4 signaling is involved in the fine-tuning of P2 receptors controlling ileal contractility, ENS cell distribution, and inhibitory NANC neurotransmission via the combined action of NO and adenosine-5'-triphosphate (ATP). For the first time, this study implicates TLR4 at regulating the crosstalk between glia and neurons in small intestine and helps to define its role in gastrointestinal motor abnormalities during dysbiosis.

12.
Br J Pharmacol ; 174(20): 3623-3639, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28755521

RESUMO

BACKGROUND AND PURPOSE: Gut microbiota is essential for the development of the gastrointestinal system, including the enteric nervous system (ENS). Perturbations of gut microbiota in early life have the potential to alter neurodevelopment leading to functional bowel disorders later in life. We examined the hypothesis that gut dysbiosis impairs the structural and functional integrity of the ENS, leading to gut dysmotility in juvenile mice. EXPERIMENTAL APPROACH: To induce gut dysbiosis, broad-spectrum antibiotics were administered by gavage to juvenile (3weeks old) male C57Bl/6 mice for 14 days. Bile acid composition in the intestinal lumen was analysed by liquid chromatography-mass spectrometry. Changes in intestinal motility were evaluated by stool frequency, transit of a fluorescent-labelled marker and isometric muscle responses of ileal full-thickness preparations to receptor and non-receptor-mediated stimuli. Alterations in ENS integrity were assessed by immunohistochemistry and Western blot analysis. KEY RESULTS: Antibiotic treatment altered gastrointestinal transit, luminal bile acid metabolism and bowel architecture. Gut dysbiosis resulted in distorted glial network, loss of myenteric plexus neurons, altered cholinergic, tachykininergic and nitrergic neurotransmission associated with reduced number of nNOS neurons and different ileal distribution of the toll-like receptor TLR2. Functional defects were partly reversed by activation of TLR2 signalling. CONCLUSIONS AND IMPLICATIONS: Gut dysbiosis caused complex morpho-functional neuromuscular rearrangements, characterized by structural defects of the ENS and increased tachykininergic neurotransmission. Altogether, our findings support the beneficial role of enteric microbiota for ENS homeostasis instrumental in ensuring proper gut neuromuscular function during critical stages of development.


Assuntos
Antibacterianos , Disbiose/fisiopatologia , Microbioma Gastrointestinal , Animais , Ceco/efeitos dos fármacos , Ceco/patologia , Disbiose/induzido quimicamente , Disbiose/patologia , Motilidade Gastrointestinal/efeitos dos fármacos , Íleo/efeitos dos fármacos , Íleo/inervação , Íleo/patologia , Íleo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Músculo Liso/fisiologia , Plexo Mientérico/efeitos dos fármacos , Plexo Mientérico/patologia , Estômago/efeitos dos fármacos , Estômago/patologia , Transmissão Sináptica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA