Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 20(38): 7615-7622, 2024 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-39283653

RESUMO

The effect of curvature and how it induces and enhances the transport of colloidal particles driven through narrow channels represent an unexplored research avenue. Here we combine experiments and simulations to investigate the dynamics of magnetically driven colloidal particles confined through a narrow, circular channel. We use an external precessing magnetic field to induce a net torque and spin the particles at a defined angular velocity. Due to the spinning, the particle propulsion emerges from the different hydrodynamic coupling with the inner and outer walls and strongly depends on the curvature. The experimental findings are combined with finite element numerical simulations that predict a positive rotation translation coupling in the mobility matrix. Further, we explore the collective transport of many particles across the curved geometry, making an experimental realization of a driven single file system. With our finding, we elucidate the effect of curvature on the transport of microscopic particles which could be important to understand the complex, yet rich, dynamics of particle systems driven through curved microfluidic channels.

2.
Soft Matter ; 18(47): 8983-8994, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36383199

RESUMO

The flow-driven transport of interacting micron-sized particles occurs in many soft matter systems spanning from the translocation of proteins to moving emulsions in microfluidic devices. Here we combine experiments and theory to investigate the collective transport properties of colloidal particles along a rotating ring of optical traps. In the corotating reference frame, the particles are driven by a vortex flow of the surrounding fluid. When increasing the depth of the optical potential, we observe a jamming behavior that manifests itself in a strong reduction of the current with increasing particle density. We show that this jamming is caused by hydrodynamic interactions that enhance the energetic barriers between the optical traps. This leads to a transition from an over- to an under-critical tilting of the potential in the corotating frame. Based on analytical considerations, the enhancement effect is estimated to increase with increasing particle size or decreasing radius of the ring of traps. Measurements for different ring radii and Stokesian dynamics simulations for corresponding particle sizes confirm this. The enhancement of potential barriers in the flow-driven system is contrasted to the reduction of barriers in a force-driven one. This diverse behavior demonstrates that hydrodynamic interactions can have a very different impact on the collective dynamics of many-body systems. Applications to soft matter and biological systems require careful consideration of the driving mechanism and of the role of hydrodynamic interactions.

3.
Phys Rev Lett ; 127(21): 214501, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34860099

RESUMO

Hydrodynamic interactions between fluid-dispersed particles are ubiquitous in soft matter and biological systems and they give rise to intriguing collective phenomena. While it was reported that these interactions can facilitate force-driven particle motion over energetic barriers, here we show the opposite effect in a flow-driven system, i.e., that hydrodynamic interactions hinder transport across barriers. We demonstrate this result by combining experiments and theory. In the experiments, we drive colloidal particles using rotating optical traps, thus creating a vortex flow in the corotating reference frame. We observe a jamminglike decrease of particle currents with density for large barriers between traps. The theoretical model shows that this jamming arises from hydrodynamic interactions between the particles. The impact of hydrodynamic interactions is reversed compared to force-driven motion, suggesting that our findings are a generic feature of flow-driven transport.

4.
Nat Commun ; 14(1): 6448, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833258

RESUMO

Collective particle transport across periodic energy landscapes is ubiquitously present in many condensed matter systems spanning from vortices in high-temperature superconductors, frictional atomic sliding, driven skyrmions to biological and active matter. Here we report the emergence of fast solitons propagating against a rotating optical landscape. These experimentally observed solitons are stable cluster waves that originate from a coordinated particle exchange process which occurs when the number of trapped microparticles exceeds the number of potential wells. The size and speed of individual solitons rapidly increase with the particle diameter as predicted by theory and confirmed by numerical simulations. We show that when several solitons coexist, an effective repulsive interaction can stabilize their propagation along the periodic potential. Our experiments demonstrate a generic mechanism for cluster-mediated transport with potential applications to condensed matter systems on different length scales.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA