RESUMO
Tissue-resident memory T (TRM) cells, functionally distinct from circulating memory T cells, have a critical role in protective immunity in tissues, are more efficacious when elicited after vaccination and yield more effective antitumor immunity, yet the signals that direct development of TRM cells are incompletely understood. Here we show that type 1 regulatory T (Treg) cells, which express the transcription factor T-bet, promote the generation of CD8+ TRM cells. The absence of T-bet-expressing type 1 Treg cells reduces the presence of TRM cells in multiple tissues and increases pathogen burden upon infectious challenge. Using infection models, we show that type 1 Treg cells are specifically recruited to local inflammatory sites via the chemokine receptor CXCR3. Close proximity with effector CD8+ T cells and Treg cell expression of integrin-ß8 endows the bioavailability of transforming growth factor-ß in the microenvironment, thereby promoting the generation of CD8+ TRM cells.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Comunicação Celular/imunologia , Diferenciação Celular/imunologia , Memória Imunológica , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos T CD8-Positivos/transplante , Coccidiose/imunologia , Coccidiose/parasitologia , Modelos Animais de Doenças , Eimeria/imunologia , Feminino , Humanos , Cadeias beta de Integrinas/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Receptores CXCR3/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/transplante , Fator de Crescimento Transformador beta/metabolismoRESUMO
Both innate and adaptive immunity are orchestrated by multiple cell types, specialized cell lineages, and their spatiotemporal encounters. It is thought that adaptive-like NK cell responses to viral infection mainly involve circulating bona fide NK cells. In this issue of Immunity, Flommersfeld et al. (2021) identify a splenic-resident ILC1-like NK cell subset that facilitates CD8+ T cell-DC interactions during anti-viral defense.
Assuntos
Células Matadoras Naturais , Viroses , Imunidade Adaptativa , Comunicação Celular , Linhagem da Célula , HumanosRESUMO
Enhancing immune cell functions in tumors remains a major challenge in cancer immunotherapy. Hypoxia is a common feature of solid tumors, and cells adapt by upregulating the transcription factor HIF-1α. Here, we defined the transcriptional landscape of mouse tumor-infiltrating natural killer (NK) cells by using single-cell RNA sequencing. Conditional deletion of Hif1a in NK cells resulted in reduced tumor growth, elevated expression of activation markers, effector molecules, and an enriched NF-κB pathway in tumor-infiltrating NK cells. Interleukin-18 (IL-18) from myeloid cells was required for NF-κB activation and the enhanced anti-tumor activity of Hif1a-/- NK cells. Extended culture with an HIF-1α inhibitor increased human NK cell responses. Low HIF1A expression was associated with high expression of IFNG in human tumor-infiltrating NK cells, and an enriched NK-IL18-IFNG signature in solid tumors correlated with increased overall patient survival. Thus, inhibition of HIF-1α unleashes NK cell anti-tumor activity and could be exploited for cancer therapy.
Assuntos
Citotoxicidade Imunológica , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Ativação Linfocitária/imunologia , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Animais , Biomarcadores , Biologia Computacional , Citocinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/mortalidade , Prognóstico , Análise de Célula Única , Transcriptoma , Microambiente Tumoral/imunologiaRESUMO
Natural killer (NK) cells are innate cytotoxic lymphocytes that contribute to immune responses against stressed, transformed, or infected cells. NK cell effector functions are regulated by microenvironmental factors, including cytokines, metabolites, and nutrients. Vitamin A is an essential micronutrient that plays an indispensable role in embryogenesis and development, but was also reported to regulate immune responses. However, the role of vitamin A in regulating NK cell functions remains poorly understood. Here, we show that the most prevalent vitamin A metabolite, all-trans retinoic acid (atRA), induces transcriptional and functional changes in NK cells leading to altered metabolism and reduced IFN-γ production in response to a wide range of stimuli. atRA-exposed NK cells display a reduced ability to support dendritic cell (DC) maturation and to eliminate immature DCs. Moreover, they support the polarization and proliferation of regulatory T cells. These results imply that in vitamin A-enriched environments, NK cells can acquire functions that might promote tolerogenic immunity and/or immunosuppression.
Assuntos
Diferenciação Celular , Células Dendríticas , Interferon gama , Células Matadoras Naturais , Linfócitos T Reguladores , Vitamina A , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Interferon gama/metabolismo , Diferenciação Celular/imunologia , Diferenciação Celular/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Humanos , Vitamina A/metabolismo , Vitamina A/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Tretinoína/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Células Cultivadas , Tolerância Imunológica/efeitos dos fármacosRESUMO
Since the postulation of the "missing-self" concept, much progress has been made in defining requirements for NK-cell activation. Unlike T lymphocytes that process signals from receptors in a hierarchic manner dominated by the T-cell receptors, NK cells integrate receptor signals more "democratically." Signals originate not only the downstream of cell-surface receptors triggered by membrane-bound ligands or cytokines, but are also mediated by specialized microenvironmental sensors that perceive the cellular surrounding by detecting metabolites or the availability of oxygen. Thus, NK-cell effector functions are driven in an organ and disease-dependent manner. Here, we review the latest findings on how NK-cell reactivity in cancer is determined by the reception and integration of complex signals. Finally, we discuss how this knowledge can be exploited to guide novel combinatorial approaches for NK-cell-based anticancer therapies.
Assuntos
Células Matadoras Naturais , Neoplasias , Humanos , Células Matadoras Naturais/metabolismo , Neoplasias/terapia , Citocinas/metabolismo , Linfócitos T/metabolismo , ImunoterapiaRESUMO
BACKGROUND: Scavenger receptors Stabilin-1 (Stab1) and Stabilin-2 (Stab2) are preferentially expressed by liver sinusoidal endothelial cells. They mediate the clearance of circulating plasma molecules controlling distant organ homeostasis. Studies suggest that Stab1 and Stab2 may affect atherosclerosis. Although subsets of tissue macrophages also express Stab1, hematopoietic Stab1 deficiency does not modulate atherogenesis. Here, we comprehensively studied how targeting Stab1 and Stab2 affects atherosclerosis. METHODS: ApoE-KO mice were interbred with Stab1-KO and Stab2-KO mice and fed a Western diet. For antibody targeting, Ldlr-KO mice were also used. Unbiased plasma proteomics were performed and independently confirmed. Ligand binding studies comprised glutathione-S-transferase-pulldown and endocytosis assays. Plasma proteome effects on monocytes were studied by single-cell RNA sequencing in vivo, and by gene expression analyses of Stabilin ligand-stimulated and plasma-stimulated bone marrow-derived monocytes/macrophages in vitro. RESULTS: Spontaneous and Western diet-associated atherogenesis was significantly reduced in ApoE-Stab1-KO and ApoE-Stab2-KO mice. Similarly, inhibition of Stab1 or Stab2 by monoclonal antibodies significantly reduced Western diet-associated atherosclerosis in ApoE-KO and Ldlr-KO mice. Although neither plasma lipid levels nor circulating immune cell numbers were decisively altered, plasma proteomics revealed a switch in the plasma proteome, consisting of 231 dysregulated proteins comparing wildtype with Stab1/2-single and Stab1/2-double KO, and of 41 proteins comparing ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO. Among this broad spectrum of common, but also disparate scavenger receptor ligand candidates, periostin, reelin, and TGFBi (transforming growth factor, ß-induced), known to modulate atherosclerosis, were independently confirmed as novel circulating ligands of Stab1/2. Single-cell RNA sequencing of circulating myeloid cells of ApoE-, ApoE-Stab1-, and ApoE-Stab2-KO mice showed transcriptomic alterations in patrolling (Ccr2-/Cx3cr1++/Ly6Clo) and inflammatory (Ccr2+/Cx3cr1+/Ly6Chi) monocytes, including downregulation of proatherogenic transcription factor Egr1. In wildtype bone marrow-derived monocytes/macrophages, ligand exposure alone did not alter Egr1 expression in vitro. However, exposure to plasma from ApoE-Stab1-KO and ApoE-Stab2-KO mice showed a reverted proatherogenic macrophage activation compared with ApoE-KO plasma, including downregulation of Egr1 in vitro. CONCLUSIONS: Inhibition of Stab1/Stab2 mediates an anti-inflammatory switch in the plasma proteome, including direct Stabilin ligands. The altered plasma proteome suppresses both patrolling and inflammatory monocytes and, thus, systemically protects against atherogenesis. Altogether, anti-Stab1- and anti-Stab2-targeted therapies provide a novel approach for the future treatment of atherosclerosis.
Assuntos
Aterosclerose , Monócitos , Animais , Camundongos , Aterosclerose/genética , Aterosclerose/prevenção & controle , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Células Endoteliais/metabolismo , Ligantes , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Proteoma , Receptores Depuradores/metabolismo , Camundongos Knockout para ApoERESUMO
BACKGROUND: Hyaluronan receptor LYVE-1 is expressed by liver sinusoidal endothelial cells (LSEC), lymphatic endothelial cells and specialized macrophages. Besides binding to hyaluronan, LYVE-1 can mediate adhesion of leukocytes and cancer cells to endothelial cells. Here, we assessed the impact of LYVE-1 on physiological liver functions and metastasis. METHODS: Mice with deficiency of Lyve-1 (Lyve-1-KO) were analyzed using histology, immunofluorescence, microarray analysis, plasma proteomics and flow cytometry. Liver metastasis was studied by intrasplenic/intravenous injection of melanoma (B16F10 luc2, WT31) or colorectal carcinoma (MC38). RESULTS: Hepatic architecture, liver size, endothelial differentiation and angiocrine functions were unaltered in Lyve-1-KO. Hyaluronan plasma levels were significantly increased in Lyve-1-KO. Besides, plasma proteomics revealed increased carbonic anhydrase-2 and decreased FXIIIA. Furthermore, gene expression analysis of LSEC indicated regulation of immunological pathways. Therefore, liver metastasis of highly and weakly immunogenic tumors, i.e. melanoma and colorectal carcinoma (CRC), was analyzed. Hepatic metastasis of B16F10 luc2 and WT31 melanoma cells, but not MC38 CRC cells, was significantly reduced in Lyve-1-KO mice. In vivo retention assays with B16F10 luc2 cells were unaltered between Lyve-1-KO and control mice. However, in tumor-free Lyve-1-KO livers numbers of hepatic CD4+, CD8+ and regulatory T cells were increased. In addition, iron deposition was found in F4/80+ liver macrophages known to exert pro-inflammatory effects. CONCLUSION: Lyve-1 deficiency controlled hepatic metastasis in a tumor cell-specific manner leading to reduced growth of hepatic metastases of melanoma, but not CRC. Anti-tumorigenic effects are likely due to enhancement of the premetastatic hepatic immune microenvironment influencing early liver metastasis formation.
RESUMO
PURPOSE: Biallelic pathogenic NBAS variants manifest as a multisystem disorder with heterogeneous clinical phenotypes such as recurrent acute liver failure, growth retardation, and susceptibility to infections. This study explores how NBAS-associated disease affects cells of the innate and adaptive immune system. METHODS: Clinical and laboratory parameters were combined with functional multi-parametric immunophenotyping methods in fifteen NBAS-deficient patients to discover possible alterations in their immune system. RESULTS: Our study revealed reduced absolute numbers of mature CD56dim natural killer (NK) cells. Notably, the residual NK cell population in NBAS-deficient patients exerted a lower potential for activation and degranulation in response to K562 target cells, suggesting an NK cell-intrinsic role for NBAS in the release of cytotoxic granules. NBAS-deficient NK cell activation and degranulation was normalized upon pre-activation by IL-2 in vitro, suggesting that functional impairment was reversible. In addition, we observed a reduced number of naïve B cells in the peripheral blood associated with hypogammaglobulinemia. CONCLUSION: In summary, we demonstrate that pathogenic biallelic variants in NBAS are associated with dysfunctional NK cells as well as impaired adaptive humoral immunity.
Assuntos
Linfócitos B/imunologia , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Células Matadoras Naturais/imunologia , Proteínas de Neoplasias/genética , Adolescente , Adulto , Criança , Pré-Escolar , Citocinas/imunologia , Expressão Gênica , Genótipo , Humanos , Lactente , Contagem de Leucócitos , Proteínas de Neoplasias/deficiência , Fenótipo , Adulto JovemRESUMO
CD8+ T cells are considered prototypical cells of adaptive immunity. Here, we uncovered a distinct CD8+ T cell population expressing the activating natural killer (NK) receptor NKp30 in the peripheral blood of healthy individuals. We revealed that IL-15 could de novo induce NKp30 expression in a population of CD8+ T cells and drive their differentiation toward a broad innate transcriptional landscape. The adaptor FcεRIγ was concomitantly induced and was shown to be crucial to enable NKp30 cell-surface expression and function in CD8+ T cells. FcεRIγ de novo expression required promoter demethylation and was accompanied by acquisition of the signaling molecule Syk and the "innate" transcription factor PLZF. IL-15-induced NKp30+CD8+ T cells exhibited high NK-like antitumor activity in vitro and were able to synergize with T cell receptor signaling. Importantly, this population potently controlled tumor growth in a preclinical xenograft mouse model. Our study, while blurring the borders between innate and adaptive immunity, reveals a unique NKp30+FcεRIγ+CD8+ T cell population with high antitumor therapeutic potential.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade Celular , Células Matadoras Naturais/imunologia , Receptor 3 Desencadeador da Citotoxicidade Natural/imunologia , Neoplasias/imunologia , Receptores Fc/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Células Matadoras Naturais/patologia , Masculino , Neoplasias/patologiaRESUMO
OBJECTIVE: TGF-ß2 (TGF-ß, transforming growth factor beta), the less-investigated sibling of TGF-ß1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-ß2 in biliary-derived liver diseases. DESIGN: As we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-ß2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels. RESULTS: TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue. CONCLUSIONS: Taken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-ß2 silencing and provide a direct rationale for TGF-ß2-directed drug development.
Assuntos
Colangite Esclerosante , Inativação Gênica , Cirrose Hepática Biliar , Cirrose Hepática , Oligonucleotídeos Antissenso , Fator de Crescimento Transformador beta2/genética , Fator de Crescimento Transformador beta2/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Colangite Esclerosante/metabolismo , Colangite Esclerosante/patologia , Modelos Animais de Doenças , Descoberta de Drogas , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/prevenção & controle , Cirrose Hepática Biliar/metabolismo , Cirrose Hepática Biliar/patologia , Camundongos , Camundongos Knockout , Regulação para Cima , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
BACKGROUND & AIMS: Phenotypic and functional natural killer (NK)-cell alterations are well described in chronic hepatitis B virus (cHBV) infection. However, it is largely unknown whether these alterations result from general effects on the overall NK-cell population or the emergence of distinct NK-cell subsets. Human cytomegalovirus (HCMV) is common in cHBV and is associated with the emergence of memory-like NK cells. We aimed to assess the impact of these cells on cHBV infection. METHODS: To assess the impact of memory-like NK cells on phenotypic and functional alterations in cHBV infection, we performed in-depth analyses of circulating NK cells in 52 patients with cHBV, 45 with chronic hepatitis C virus infection and 50 healthy donors, with respect to their HCMV serostatus. RESULTS: In patients with cHBV/HCMV+, FcεRIγ- memory-like NK cells were present in higher frequencies and with higher prevalence than in healthy donors with HCMV+. This pronounced HCMV-associated memory-like NK-cell expansion could be identified as key determinant of the NK-cell response in cHBV infection. Furthermore, we observed that memory-like NK cells consist of epigenetically distinct subsets and exhibit key metabolic characteristics of long-living cells. Despite ongoing chronic infection, the phenotype of memory-like NK cells was conserved in patients with cHBV/HCMV+. Functional characteristics of memory-like NK cells also remained largely unaffected by cHBV infection with the exception of an increased degranulation capacity in response to CD16 stimulation that was, however, detectable in both memory-like and conventional NK cells. CONCLUSIONS: The emergence of HCMV-associated memory-like NK cells shapes the overall NK-cell response in cHBV infection and contributes to a general shift towards CD16-mediated effector functions. Therefore, HCMV coinfection needs to be considered in the design of immunotherapeutic approaches that target NK cells in cHBV. LAY SUMMARY: In chronic hepatitis B virus infection, natural killer (NK)-cell phenotype and function is altered. In this study, we demonstrate that these changes are linked to the emergence of a distinct NK-cell subset, namely memory-like NK cells. The emergence of these memory-like NK cells is associated with coinfection of human cytomegalovirus that affects the majority of patients with chronic hepatitis B.
Assuntos
Imunidade Adaptativa/imunologia , Infecções por Citomegalovirus , Hepatite B Crônica , Células Matadoras Naturais/imunologia , Subpopulações de Linfócitos , Receptores de IgG/imunologia , Coinfecção/imunologia , Infecções por Citomegalovirus/sangue , Infecções por Citomegalovirus/imunologia , Feminino , Hepatite B Crônica/sangue , Hepatite B Crônica/imunologia , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia , Masculino , Pessoa de Meia-IdadeRESUMO
To exploit autologous NK cells for cancer immunotherapy, it is highly relevant to circumvent killer cell immunoglobulin-like receptor (KIR)-mediated self-inhibition of human NK cells by HLA-I-expressing tumor cells. Here, we show that stimulation of NK cells with IL-12/15/18 for two days led to downregulation of surface expression of the inhibitory KIR2DL2/L3, KIR2DL1 and KIR3DL1 receptors on peripheral blood NK cells. Downregulation of KIR expression was attributed to decreased KIR mRNA levels which could be re-induced already 3 days after re-culture in IL-2. Reduced KIR2DL2/L3 expression on IL-12/15/18-activated NK cells resulted in less inhibition upon antibody-mediated KIR engagement and increased CD16-dependent cytotoxicity in redirected lysis assays. Most importantly, downregulated KIR2DL2/L3 expression enabled enhanced cytotoxicity of IL-12/15/18-stimulated NK cells against tumor cells expressing cognate HLA-I molecules. NK cells pre-activated with IL-12/15/18 were previously shown to exert potent anti-tumor activity and memory-like long-lived functionality, mediating remission in a subset of acute myeloid leukemia (AML) patients in a clinical trial. Our study reveals a novel mechanism of IL-12/15/18 in improving the cytotoxicity of NK cells by reducing their sensitivity to inhibition by self-HLA-I due to decreased KIR expression, highlighting the potency of IL-12/15/18-activated NK cells for anti-tumor immunotherapy protocols.
Assuntos
Vacinas Anticâncer/imunologia , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/terapia , Receptores KIR2DL2/metabolismo , Receptores KIR2DL3/metabolismo , Receptores KIR3DL1/metabolismo , Animais , Citotoxicidade Celular Dependente de Anticorpos , Linhagem Celular Tumoral , Regulação para Baixo , Antígenos HLA/metabolismo , Humanos , Interleucina-12/metabolismo , Interleucina-15/metabolismo , Interleucina-18/metabolismo , Células Matadoras Naturais/transplante , Leucemia Mieloide Aguda/imunologia , Ativação Linfocitária , CamundongosRESUMO
BACKGROUND & AIMS: Natural killer (NK) cells are found at increased frequencies in patients with hepatitis C virus (HCV). NK cell activation has been shown to correlate with HCV clearance and to predict a favourable treatment response. The aim of our study was to dissect mechanisms leading to NK cell activation and proliferation in response to HCV. METHODS: NK cell phenotype, proliferation, and function were assessed after the 6-day co-culture of human peripheral blood mononuclear cells with either HCV replicon-containing HuH6 hepatoblastoma cells or HCV-infected HuH7.5 cells. The results obtained were confirmed by immunohistochemistry of liver biopsies from patients with HCV and from HCV-negative controls. RESULTS: In HCV-containing co-cultures, a higher frequency of NK cells upregulated the expression of the high-affinity IL-2 receptor chain CD25, proliferated more rapidly, and produced higher amounts of interferon γ compared with NK cells from control co-cultures. This NK cell activation was dependent on IL-2, cell-cell contact-mediated signals, and HCV replicon-exposed monocytes. The tumour necrosis factor-receptor superfamily member OX40 was induced on the activated CD25± NK cell subset and this induction was abrogated by the depletion of CD14+ monocytes. Moreover, OX40L was upregulated on CD14± monocyte-derived cells co-cultured with HCV-containing cells and also observed in liver biopsies from patients with HCV. Importantly, blocking of the OX40/OX40L interaction abolished both NK cell activation and proliferation. CONCLUSIONS: Our results uncover a previously unappreciated cell-cell contact-mediated mechanism of NK cell activation and proliferation in response to HCV, mediated by monocyte-derived cells and the OX40/OX40L axis. These results reveal a novel mode of crosstalk between innate immune cells during viral infection. LAY SUMMARY: Using a cell-culture model of hepatitis C virus (HCV) infection, our study revealed that natural killer (NK) cells become activated and proliferate when they are co-cultured with HCV-containing liver cells. The mechanism of this activation involves crosstalk with other innate immune cells and a cell-cell contact interaction mediated by the cell surface molecules OX40 and OX40L. Our study reveals a novel pathway leading to NK cell proliferation and activation against virus-infected cells that might be of relevance in antiviral immunity.
Assuntos
Hepacivirus/imunologia , Hepatite C/imunologia , Hepatócitos , Células Matadoras Naturais/imunologia , Monócitos/imunologia , Ligante OX40/imunologia , Biópsia , Proliferação de Células , Hepatócitos/imunologia , Hepatócitos/virologia , Humanos , Fígado/patologia , Ativação Linfocitária , Modelos Imunológicos , Replicação ViralRESUMO
Hemolytic diseases, such as sickle cell anemia and thalassemia, are characterized by enhanced release of hemoglobin and heme into the circulation, heme-iron loading of reticulo-endothelial system macrophages, and chronic inflammation. Here we show that in addition to activating the vascular endothelium, hemoglobin and heme excess alters the macrophage phenotype in sickle cell disease. We demonstrate that exposure of cultured macrophages to hemolytic aged red blood cells, heme, or iron causes their functional phenotypic change toward a proinflammatory state. In addition, hemolysis and macrophage heme/iron accumulation in a mouse model of sickle disease trigger similar proinflammatory phenotypic alterations in hepatic macrophages. On the mechanistic level, this critically depends on reactive oxygen species production and activation of the Toll-like receptor 4 signaling pathway. We further demonstrate that the heme scavenger hemopexin protects reticulo-endothelial macrophages from heme overload in heme-loaded Hx-null mice and reduces production of cytokines and reactive oxygen species. Importantly, in sickle mice, the administration of human exogenous hemopexin attenuates the inflammatory phenotype of macrophages. Taken together, our data suggest that therapeutic administration of hemopexin is beneficial to counteract heme-driven macrophage-mediated inflammation and its pathophysiologic consequences in sickle cell disease.
Assuntos
Anemia Falciforme/tratamento farmacológico , Anemia Falciforme/imunologia , Anti-Inflamatórios/uso terapêutico , Heme/imunologia , Hemopexina/uso terapêutico , Macrófagos/imunologia , Anemia Falciforme/genética , Anemia Falciforme/patologia , Animais , Linhagem Celular , Células Cultivadas , Citocinas/imunologia , Modelos Animais de Doenças , Deleção de Genes , Hemopexina/genética , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Espécies Reativas de Oxigênio/imunologia , Receptor 4 Toll-Like/imunologiaRESUMO
The existence and expansion of adaptive NK-cell subsets have been linked to HCMV infection. Phenotypically, a majority of adaptive NK cells expresses the activating receptor NKG2C and CD57. Some of the molecular factors driving the expansion of NKG2C+ CD57+ NK cells in HCMV infection have been identified. The direct interaction of adaptive NK cells with HCMV-infected cells, preceding the expansion, however, remains less studied. Recently, adaptive NK cells were reported to express higher levels of the co-activating receptor CD2. We explored whether CD2 was directly involved in the response of adaptive NK cells to HCMV. In a co-culture system of human PBMCs and productively infected fibroblasts, we observed an upregulation of CD69, CD25, and HLA-DR on all NK cells. However, only in adaptive NK cells was this increase largely blocked by antibodies against CD2 and CD58. Functionally, this blockade also resulted in diminished production of IFN-γ and TNF-α by adaptive human NK cells in response to HCMV-infected cells. Our results demonstrate that binding of CD2 to upregulated CD58 on infected cells is a critical event for antibody-mediated activation and subsequent effector functions of adaptive NKG2C+ CD57+ NK cells during the antiviral response.
Assuntos
Antígenos CD2/metabolismo , Antígenos CD58/metabolismo , Infecções por Citomegalovirus/imunologia , Citomegalovirus/imunologia , Fibroblastos/imunologia , Células Matadoras Naturais/imunologia , Imunidade Adaptativa , Anticorpos/metabolismo , Proliferação de Células , Células Cultivadas , Fibroblastos/virologia , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Ligação Proteica , Fator de Necrose Tumoral alfa/metabolismoRESUMO
NK cells express an array of activating and inhibitory receptors that determine NK cell responses upon triggering by cognate ligands. Although activating NK cell receptors recognize mainly ligands expressed by stressed, virus-infected, or transformed cells, most inhibitory receptors engage MHC class I, preventing NK cell activation in response to healthy cells. In this study, we provide insight into the regulation and function of additional receptors involved in mouse NK cell responses: CTLA-4 and CD28. CTLA-4 and CD28 engage the same ligands, B7-1 and B7-2, which are primarily expressed by APCs, such as dendritic cells. Our data demonstrate that activation of mouse NK cells with IL-2 induces the expression of CTLA-4 and upregulates CD28. CTLA-4 expression in IL-2-expanded NK cells was further up- or downregulated by IL-12 or TGF-ß, respectively. Using gene-deficient NK cells, we show that CD28 induces, and CTLA-4 inhibits, IFN-γ release by NK cells upon engagement by the recombinant ligand, B7-1, or upon coculture with mature dendritic cells. Notably, we show that mouse NK cells infiltrating solid tumors express CD28 and CTLA-4 and respond to stimulation with recombinant B7-1, suggesting that the NK cell responses mediated by the CD28/CTLA-4:B7-1/B7-2 system could be of importance during malignant disease. Accordingly, our study might have implications for immunotherapy of cancer based on blocking anti-CTLA-4 mAbs.
Assuntos
Antígeno CTLA-4/imunologia , Células Dendríticas/imunologia , Interferon gama/biossíntese , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Animais , Antígenos CD28/imunologia , Antígenos CD28/metabolismo , Antígeno CTLA-4/metabolismo , Separação Celular , Células Dendríticas/metabolismo , Citometria de Fluxo , Humanos , Interferon gama/imunologia , Células Matadoras Naturais/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/imunologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
Neuroinflammation plays a key role in secondary brain damage after stroke. Although deleterious effects of proinflammatory cytokines are well characterized, direct cytotoxic effects of invading immune cells on the ischemic brain and the importance of their antigen-dependent activation are essentially unknown. Here we examined the effects of adaptive and innate immune cells-cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells-that share the direct perforin-mediated cytotoxic pathway on outcome after cerebral ischemia in mice. Although CTLs and NK cells both invaded the ischemic brain, only brain-infiltrating CTLs but not NK cells were more activated than their splenic counterparts. Depletion of CTLs decreased infarct volumes and behavioral deficit in two ischemia models, whereas NK cell depletion had no effect. Correspondingly, adoptive CTL transfer from wild-type into Rag1 knock-out mice increased infarct size. Adoptive CTL transfer from perforin knock-out or interferon-γ knock-out mice into Rag1 knock-out mice revealed that CTL neurotoxicity was mediated by perforin. Accordingly, CTLs isolated from wild-type or interferon-γ knock-out but not from perforin knock-out mice induced neuronal cell death in vitro. CTLs derived from ovalbumin-specific T-cell receptor transgenic mice were not activated and infiltrated less into the ischemic brain compared with wild-type CTLs. Their transfer did not increase the infarct size of Rag1 knock-out mice, indicating antigen-dependent activation as an essential component of CTL neurotoxicity. Our findings underscore the importance of antigen-dependent, direct cytotoxic immune responses in stroke and suggest modulation of CTLs and their effector pathways as a potential new strategy for stroke therapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citotoxinas/toxicidade , Modelos Animais de Doenças , Perforina/toxicidade , Acidente Vascular Cerebral/imunologia , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Acidente Vascular Cerebral/induzido quimicamente , Acidente Vascular Cerebral/patologiaRESUMO
The S100A8/A9 heterodimer (calprotectin) acts as a danger signal when secreted into the extracellular space during inflammation and tissue damage. It promotes proinflammatory responses and drives tumor development in different models of inflammation-driven carcinogenesis. S100A8/A9 is strongly expressed in several human tumors, including hepatocellular carcinoma (HCC). Apart from this evidence, the role of calprotectin in hepatocyte transformation and tumor microenvironment is still unknown. The aim of this study was to define the function of S100A8/A9 in inflammation-driven HCC. Mice lacking S100a9 were crossed with the Mdr2(-/-) model, a prototype of inflammation-induced HCC formation. S100a9(-/-) Mdr2(-/-) (dKO) mice displayed no significant differences in tumor incidence or multiplicity compared to Mdr2(-/-) animals. Chronic liver inflammation, fibrosis and oval cell activation were not affected upon S100a9 deletion. Our data demonstrate that, although highly upregulated, calprotectin is dispensable in the onset and development of HCC, and in the maintenance of liver inflammation.
Assuntos
Calgranulina B/genética , Inflamação/metabolismo , Neoplasias Hepáticas Experimentais/patologia , Fígado/metabolismo , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Técnicas de Inativação de Genes , Humanos , Inflamação/patologia , Complexo Antígeno L1 Leucocitário/metabolismo , Fígado/patologia , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/metabolismo , Camundongos , Camundongos KnockoutRESUMO
Natural killer (NK) cells are central effector cells during innate immune responses against cancer. Natural cytotoxicity receptors expressed by NK cells such as NKp30 are involved in the recognition of transformed cells. Recently, the novel B7 family member B7-H6, which is expressed on the cell surface of various tumor cells including hematological malignancies, was identified as an activating ligand for NKp30. To investigate expression and regulation of B7-H6, we generated monoclonal antibodies. Our study reveals that B7-H6 surface protein and messenger RNA (mRNA) expression in various tumor cell lines was downregulated upon treatment with pan- or class I histone deacetylase inhibitors (HDACi) as well as after small interfering RNA-mediated knockdown of the class I histone deacetylases (HDAC) 2 or 3. B7-H6 downregulation was associated with decreased B7-H6 reporter activity and reduced histone acetylation at the B7-H6 promoter. In certain primary lymphoma and hepatocellular carcinoma samples, B7-H6 mRNA levels were elevated and correlated with HDAC3 expression. Finally, downregulation of B7-H6 on tumor cells by HDACi reduced NKp30-dependent effector functions of NK cells. Thus, we identified a novel mechanism that governs B7-H6 expression in tumor cells that has implications for potential cancer treatments combining immunotherapy with HDACi.