Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(50): E8079-E8088, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911818

RESUMO

Blastocyst implantation is a complex process requiring coordination of a dynamic sequence of embryo-uterine interactions. Blood vessels enter the uterus from the mesometrium, demarcating the uterus into mesometrial (M) and antimesometrial (AM) domains. Implantation occurs along the uterine longitudinal axis within specialized implantation chambers (crypts) that originate within the evaginations directed from the primary lumen toward the AM domain. The morphological orientation of crypts in rodent uteri was recognized more than a century ago, but the mechanism remained unknown. Here we provide evidence that planar cell polarity (PCP) signaling orchestrates directed epithelial evaginations to form crypts for implantation in mice. Uterine deletion of Vang-like protein 2, but not Vang-like protein 1, conferred aberrant PCP signaling, misdirected epithelial evaginations, defective crypt formation, and blastocyst attachment, leading to severely compromised pregnancy outcomes. The study reveals a previously unrecognized role for PCP in executing spatial cues for crypt formation and implantation. Because PCP is an evolutionarily conserved phenomenon, our study is likely to inspire implantation studies of this signaling pathway in humans and other species.


Assuntos
Polaridade Celular/fisiologia , Implantação do Embrião/fisiologia , Útero/fisiologia , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Comunicação Celular/fisiologia , Proteínas Desgrenhadas/fisiologia , Epitélio/anatomia & histologia , Epitélio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Gravidez , Resultado da Gravidez , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/deficiência , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/fisiologia , Transdução de Sinais/fisiologia , Útero/anatomia & histologia , Proteína Wnt-5a/deficiência , Proteína Wnt-5a/genética , Proteína Wnt-5a/fisiologia
2.
Am J Obstet Gynecol ; 217(5): 592.e1-592.e17, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28847437

RESUMO

BACKGROUND: Decidual senescence has been considered a mechanism of disease for spontaneous preterm labor in the absence of severe acute inflammation. Yet, signs of cellular senescence have also been observed in the chorioamniotic membranes from women who underwent the physiological process of labor at term. OBJECTIVE: We aimed to investigate whether, in the absence of acute histologic chorioamnionitis, the chorioamniotic membranes from women who underwent spontaneous preterm labor or labor at term exhibit signs of cellular senescence. STUDY DESIGN: Chorioamniotic membrane samples were collected from women who underwent spontaneous preterm labor or labor at term. Gestational age-matched nonlabor controls were also included. Senescence-associated genes/proteins were determined using reverse transcription quantitative polymerase chain reaction analysis (n = 7-9 each for array; n = 26-28 each for validation), enzyme-linked immunosorbent assays (n = 7-9 each), immunoblotting (n = 6-7 each), and immunohistochemistry (n = 7-8 each). Senescence-associated ß-galactosidase activity (n = 7-11 each) and telomere length (n = 15-22 each) were also evaluated. RESULTS: In the chorioamniotic membranes without acute histologic chorioamnionitis: (1) the expression profile of senescence-associated genes was different between the labor groups (term in labor and preterm in labor) and the nonlabor groups (term no labor and preterm no labor), yet there were differences between the term in labor and preterm in labor groups; (2) most of the differentially expressed genes among the groups were closely related to the tumor suppressor protein (TP53) pathway; (3) the expression of TP53 was down-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (4) the expression of CDKN1A (gene coding for p21) was up-regulated in the term in labor and preterm in labor groups compared to their nonlabor counterparts; (5) the expression of the cyclin kinase CDK2 and cyclins CCNA2, CCNB1, and CCNE1 was down-regulated in the preterm in labor group compared to the preterm no labor group; (6) the concentration of TP53 was lower in the preterm in labor group than in the preterm no labor and term in labor groups; (7) the senescence-associated ß-galactosidase activity was greater in the preterm in labor group than in the preterm no labor and term in labor groups; (8) the concentration of phospho-S6 ribosomal protein was reduced in the term in labor group compared to its nonlabor counterpart, but no differences were observed between the preterm in labor and preterm no labor groups; and (9) no significant differences were observed in relative telomere length among the study groups (term no labor, term in labor, preterm no labor, and preterm in labor). CONCLUSION: In the absence of acute histologic chorioamnionitis, signs of cellular senescence are present in the chorioamniotic membranes from women who underwent spontaneous preterm labor compared to those who delivered preterm in the absence of labor. However, the chorioamniotic membranes from women who underwent spontaneous labor at term did not show consistent signs of cellular senescence in the absence of histologic chorioamnionitis. These results suggest that different pathways are implicated in the pathological and physiological processes of labor.


Assuntos
Âmnio/citologia , Senescência Celular/genética , Córion/citologia , Trabalho de Parto/genética , Trabalho de Parto Prematuro/genética , Adulto , Âmnio/metabolismo , Corioamnionite/patologia , Córion/metabolismo , Ciclina A2/genética , Ciclina B1/genética , Ciclina E/genética , Quinase 2 Dependente de Ciclina/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Ensaio de Imunoadsorção Enzimática , Feminino , Idade Gestacional , Humanos , Imuno-Histoquímica , Trabalho de Parto/metabolismo , Trabalho de Parto Prematuro/metabolismo , Proteínas Oncogênicas/genética , Fosfoproteínas/metabolismo , Gravidez , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína S6 Ribossômica/metabolismo , Transcriptoma , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Adulto Jovem , beta-Galactosidase/metabolismo
3.
Semin Cell Dev Biol ; 34: 56-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24862857

RESUMO

Embryo implantation in eutherian mammals is a highly complex process and requires reciprocal communication between different cell types of the embryo at the blastocyst stage and receptive uterus. The events of implantation are dynamic and highly orchestrated over a species-specific period of time with distinctive and overlapping expression of many genes. Delayed implantation in different species has helped elucidate some of the intricacies of implantation timing and different modes of the implantation process. How these events are coordinated in time and space are not clearly understood. We discuss potential regulators of the precise timing of these events with respect to central and local clock mechanisms. This review focuses on the timing and synchronization of early pregnancy events in mouse and consequences of their aberrations at later stages of pregnancy.


Assuntos
Útero/fisiologia , Animais , Blastocisto/fisiologia , Implantação do Embrião , Desenvolvimento Embrionário , Feminino , Regulação da Expressão Gênica , Humanos , Gravidez
4.
J Biol Chem ; 290(24): 15337-49, 2015 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-25931120

RESUMO

Embryonic diapause is a reproductive strategy widespread in the animal kingdom. This phenomenon is defined by a temporary arrest in blastocyst growth and metabolic activity within a quiescent uterus without implantation until the environmental and maternal milieu become favorable for pregnancy to progress. We found that uterine Msx expression persists during diapause across species; their inactivation in the mouse uterus results in termination of diapause with the development of implantation-like responses ("pseudoimplantation") that ultimately succumbed to resorption. To understand the cause of this failure, we compared proteome profiles between floxed and Msx-deleted uteri. In deleted uteri, several functional networks, including transcription/translation, ubiquitin-proteasome, inflammation, and endoplasmic reticulum stress, were dysregulated. Computational modeling predicted intersection of these pathways on an enhanced inflammatory signature. Further studies showed that this signature was reflected in increased phosphorylated IκB levels and nuclear NFκB in deleted uteri. This was associated with enhanced proteasome activity and endoplasmic reticulum stress. Interestingly, treatment with anti-inflammatory glucocorticoid (dexamethasone) reduced the inflammatory signature with improvement of the diapause phenotype. These findings highlight an unexpected role of uterine Msx in limiting aberrant inflammatory responses to maintain embryonic diapause.


Assuntos
Desenvolvimento Embrionário/genética , Genes Homeobox , Proteínas de Homeodomínio/fisiologia , Inflamação/genética , Fator de Transcrição MSX1/fisiologia , Músculo Liso/patologia , Útero/patologia , Animais , Feminino , Proteínas de Homeodomínio/genética , Fator de Transcrição MSX1/genética , Camundongos , Camundongos Knockout , Gravidez , Útero/metabolismo
5.
Analyst ; 141(5): 1649-59, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26734689

RESUMO

Understanding how biological molecules are generated, metabolized and eliminated in living systems is important for interpreting processes such as immune response and disease pathology. While genomic and proteomic studies have provided vast amounts of information over the last several decades, interest in lipidomics has also grown due to improved analytical technologies revealing altered lipid metabolism in type 2 diabetes, cancer, and lipid storage disease. Mass spectrometry (MS) measurements are currently the dominant approach for characterizing the lipidome by providing detailed information on the spatial and temporal composition of lipids. However, interpreting lipids' biological roles is challenging due to the existence of numerous structural and stereoisomers (i.e. distinct acyl chain and double-bond positions), which are often unresolvable using present approaches. Here we show that combining liquid chromatography (LC) and structurally-based ion mobility spectrometry (IMS) measurement with MS analyses distinguishes lipid isomers and allows insight into biological and disease processes.


Assuntos
Cromatografia Líquida/métodos , Lipídeos/química , Espectrometria de Massas/métodos , Metabolômica/métodos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lipídeos/isolamento & purificação , Estereoisomerismo
6.
Adv Anat Embryol Cell Biol ; 216: 69-85, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26450495

RESUMO

Embryo implantation is a complex process involving endocrine, paracrine, autocrine, and juxtacrine modulators that span cell-cell and cell-matrix interactions. The quality of implantation is predictive for pregnancy success. Earlier observational studies formed the basis for genetic and molecular approaches that ensued with emerging technological advances. However, the precise sequence and details of the molecular interactions involved have yet to be defined. This review reflects briefly on aspects of our current understanding of rodent implantation as a tribute to Roger Short's lifelong contributions to the field of reproductive physiology.


Assuntos
Implantação do Embrião , Roedores/fisiologia , Animais , Feminino , Gravidez , Útero/fisiologia
7.
Anal Bioanal Chem ; 407(8): 2063-71, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25395201

RESUMO

Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 µm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.


Assuntos
Metabolismo dos Lipídeos , Lipídeos/química , Animais , Encéfalo/metabolismo , Feminino , Imageamento Tridimensional , Masculino , Camundongos , Nanotecnologia , Espectrometria de Massas por Ionização por Electrospray
9.
Proc Natl Acad Sci U S A ; 108(44): 18073-8, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22025690

RESUMO

Although preterm delivery is a major global health issue, its causes and underlying mechanism remain elusive. Using mutant mice, mimicking aspects of human preterm birth, we show here that uterine decidual senescence early in pregnancy via heightened mammalian target of rapamycin complex 1 (mTORC1) signaling is a significant contributor of preterm birth and fetal death, and that these adverse phenotypes are rescued by a low dose of rapamycin, an inhibitor of mTORC1 signaling. This role of mTORC1 signaling in determining the timing of birth in mice may help us better understand the mechanism of the timing of birth in humans and develop new and improved strategies to combat the global problem of preterm birth.


Assuntos
Nascimento Prematuro , Proteínas/metabolismo , Transdução de Sinais , Útero/metabolismo , Animais , Western Blotting , Inibidor de Quinase Dependente de Ciclina p21/genética , Feminino , Morte Fetal , Imuno-Histoquímica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos , Serina-Treonina Quinases TOR , Proteína Supressora de Tumor p53/genética
10.
Anal Chem ; 85(20): 9596-603, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24040919

RESUMO

Nanospray desorption electrospray ionization (nano-DESI) combined with tandem mass spectrometry (MS/MS), high-resolution mass analysis of the fragment ions (m/Δm = 17 500 at m/z 200), and rapid spectral acquisition enabled simultaneous imaging and identification of a large number of metabolites and lipids from 92 selected m/z windows (±1 Da) with a spatial resolution of better than 150 µm. Mouse uterine sections of implantation sites on day 6 of pregnancy were analyzed in the ambient environment without any sample pretreatment. MS/MS imaging was performed by scanning the sample under the nano-DESI probe at 10 µm/s, while higher-energy collision-induced dissociation (HCD) spectra were acquired for a targeted inclusion list of 92 m/z values at a rate of ∼6.3 spectra/s. Molecular ions and their corresponding fragments, separated by high-resolution mass analysis, were assigned on the basis of accurate mass measurement. Using this approach, we were able to identify and image both abundant and low-abundance isobaric and isomeric species within each m/z window. MS/MS analysis enabled efficient separation and identification of isomeric and isobaric phospholipids that are difficult to separate in full-scan mode. Furthermore, we identified several metabolites associated with early pregnancy and obtained the first 2D images of these molecules.


Assuntos
Imagem Molecular/métodos , Nanotecnologia/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Animais , Feminino , Metabolismo dos Lipídeos , Masculino , Metabolômica , Camundongos , Gravidez , Dióxido de Silício/química , Fatores de Tempo
11.
Mol Hum Reprod ; 19(7): 463-72, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23475984

RESUMO

Heightened mammalian target of rapamycin complex 1 (mTORC1) activity by genetic deletion of its direct inhibitor, Tsc1, is associated with aberrant development and dysfunction of the female reproductive tract in mice. Here, we compared the phenotypes of mice with conditional deletion of Tsc1 in the female reproductive tract by either progesterone receptor (PR)-Cre (Tsc1(PR(d/d))), which inactivates Tsc1 in all major cell types in the uterus (epithelium, stroma and myometrium), or anti-Mullerian hormone type 2 receptor (Amhr2)-Cre (Tsc1(Amhr2(d/d))), which inactivates stromal and myometrial Tsc1. Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) females are infertile resulting from oviductal hyperplasia, retention of embryos in the oviduct and implantation failure. In contrast to the appropriate embryonic development after fertilization seen in Tsc1(Amhr2(d/d)) females, embryo development was disrupted in Tsc1(PR(d/d)) females. In addition, uteri in Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) females showed epithelial hyperplasia but not endometrial cancer. In conclusion, Tsc1(PR(d/d)) and Tsc1(Amhr2(d/d)) have overlapping yet distinct phenotypes in the context of compartment-specific deletion of Tsc1.


Assuntos
Complexos Multiproteicos/metabolismo , Oviductos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Útero/metabolismo , Animais , Estradiol/sangue , Feminino , Fertilização in vitro , Imuno-Histoquímica , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Mutantes , Complexos Multiproteicos/genética , Ovário/metabolismo , Progesterona/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/genética
12.
Front Endocrinol (Lausanne) ; 14: 1212716, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720527

RESUMO

Cellular senescence is a response to a wide variety of stressors, including DNA damage, oncogene activation and physiologic aging, and pathologically accelerated senescence contributes to human disease, including diabetes mellitus. Indeed, recent work in this field has demonstrated a role for pancreatic ß-cell senescence in the pathogenesis of Type 1 Diabetes, Type 2 Diabetes and monogenic diabetes. Small molecule or genetic targeting of senescent ß-cells has shown promise as a novel therapeutic approach for preventing and treating diabetes. Despite these advances, major questions remain around the molecular mechanisms driving senescence in the ß-cell, identification of molecular markers that distinguish senescent from non-senescent ß-cell subpopulations, and translation of proof-of-concept therapies into novel treatments for diabetes in humans. Here, we summarize the current state of the field of ß-cell senescence, highlighting insights from mouse models as well as studies on human islets and ß-cells. We identify markers that have been used to detect ß-cell senescence to unify future research efforts in this field. We discuss emerging concepts of the natural history of senescence in ß-cells, heterogeneity of senescent ß-cells subpopulations, role of sex differences in senescent responses, and the consequences of senescence on integrated islet function and microenvironment. As a young and developing field, there remain many open research questions which need to be addressed to move senescence-targeted approaches towards clinical investigation.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Feminino , Masculino , Humanos , Animais , Camundongos , Diabetes Mellitus Tipo 2/terapia , Envelhecimento , Senescência Celular , Dano ao DNA
13.
bioRxiv ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37662349

RESUMO

MAFA and MAFB are related basic-leucine-zipper domain containing transcription factors which have important regulatory roles in a variety of cellular contexts, including pancreatic islet hormone producing α and ß cells. These proteins have similar as well as distinct functional properties, and here we first used AlphaFold2, an artificial intelligence-based structural prediction program, to obtain insight into the three-dimensional organization of their non-DNA binding/dimerization sequences. This analysis was conducted on the wildtype (WT) proteins as well the pathogenic MAFA Ser64Phe (MAFA S64F ) and MAFB Ser70Ala (MAFB S70A ) mutants, with structural differences revealed between MAFA WT and MAFB WT in addition to MAFA S64F and MAFA WT , but not MAFB S70A and MAFB WT . Functional analysis disclosed that the inability to properly phosphorylate at S70 in MAFB S70A , like S65 in MAFA S64F , greatly increased protein stability and enabled MAFB S70A to accelerate cellular senescence in cultured cells. Significant differences were also observed in the ability of MAFA, MAFA S64F , MAFB, and MAFB S70A to cooperatively stimulate Insulin enhancer-driven activity in the presence of other islet-enriched transcription factors. Experiments performed on protein chimeras disclosed that these properties were greatly influenced by structural differences found between the WT and mutant proteins. In general, these results revealed that AlphaFold2 predicts features essential to protein activity.

14.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37606041

RESUMO

Type 2 diabetes (T2D) is associated with compromised identity of insulin-producing pancreatic islet ß cells, characterized by inappropriate production of other islet cell-enriched hormones. Here, we examined how hormone misexpression was influenced by the MAFA and MAFB transcription factors, closely related proteins that maintain islet cell function. Mice specifically lacking MafA in ß cells demonstrated broad, population-wide changes in hormone gene expression with an overall gene signature closely resembling islet gastrin+ (Gast+) cells generated under conditions of chronic hyperglycemia and obesity. A human ß cell line deficient in MAFB, but not one lacking MAFA, also produced a GAST+ gene expression pattern. In addition, GAST was detected in human T2D ß cells with low levels of MAFB. Moreover, evidence is provided that human MAFB can directly repress GAST gene transcription. These results support a potentially novel, species-specific role for MafA and MAFB in maintaining adult mouse and human ß cell identity, respectively. Here, we discuss the possibility that induction of Gast/GAST and other non-ß cell hormones, by reduction in the levels of these transcription factors, represents a dysfunctional ß cell signature.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Adulto , Humanos , Animais , Camundongos , Fator de Transcrição MafB/genética , Insulina
15.
J Clin Endocrinol Metab ; 106(1): 153-167, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32961557

RESUMO

CONTEXT: Polycystic ovary syndrome (PCOS) is one of the leading causes of infertility, yet current diagnostic criteria are ineffective at identifying patients whose symptoms reside outside strict diagnostic criteria. As a result, PCOS is underdiagnosed and its etiology is poorly understood. OBJECTIVE: We aim to characterize the phenotypic spectrum of PCOS clinical features within and across racial and ethnic groups. METHODS: We developed a strictly defined PCOS algorithm (PCOSkeyword-strict) using the International Classification of Diseases, ninth and tenth revisions and keywords mined from clinical notes in electronic health records (EHRs) data. We then systematically relaxed the inclusion criteria to evaluate the change in epidemiological and genetic associations resulting in 3 subsequent algorithms (PCOScoded-broad, PCOScoded-strict, and PCOSkeyword-broad). We evaluated the performance of each phenotyping approach and characterized prominent clinical features observed in racially and ethnically diverse PCOS patients. RESULTS: The best performance came from the PCOScoded-strict algorithm, with a positive predictive value of 98%. Individuals classified as cases by this algorithm had significantly higher body mass index (BMI), insulin levels, free testosterone values, and genetic risk scores for PCOS, compared to controls. Median BMI was higher in African American females with PCOS compared to White and Hispanic females with PCOS. CONCLUSIONS: PCOS symptoms are observed across a severity spectrum that parallels the continuous genetic liability to PCOS in the general population. Racial and ethnic group differences exist in PCOS symptomology and metabolic health across different phenotyping strategies.


Assuntos
Algoritmos , Registros Eletrônicos de Saúde , Síndrome do Ovário Policístico , Adolescente , Adulto , Estudos de Casos e Controles , Interpretação Estatística de Dados , Mineração de Dados/métodos , Registros Eletrônicos de Saúde/estatística & dados numéricos , Etnicidade/genética , Etnicidade/estatística & dados numéricos , Feminino , Predisposição Genética para Doença/etnologia , Humanos , Herança Multifatorial , Fenótipo , Síndrome do Ovário Policístico/diagnóstico , Síndrome do Ovário Policístico/etnologia , Síndrome do Ovário Policístico/genética , Valor Preditivo dos Testes , Grupos Raciais/genética , Grupos Raciais/estatística & dados numéricos , Fatores de Risco , Tennessee/epidemiologia , Adulto Jovem
16.
Cell Rep ; 37(2): 109813, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34644565

RESUMO

A heterozygous missense mutation of the islet ß cell-enriched MAFA transcription factor (p.Ser64Phe [S64F]) is found in patients with adult-onset ß cell dysfunction (diabetes or insulinomatosis), with men more prone to diabetes than women. This mutation engenders increased stability to the unstable MAFA protein. Here, we develop a S64F MafA mouse model to determine how ß cell function is affected and find sex-dependent phenotypes. Heterozygous mutant males (MafAS64F/+) display impaired glucose tolerance, while females are slightly hypoglycemic with improved blood glucose clearance. Only MafAS64F/+ males show transiently higher MafA protein levels preceding glucose intolerance and sex-dependent changes to genes involved in Ca2+ signaling, DNA damage, aging, and senescence. MAFAS64F production in male human ß cells also accelerate cellular senescence and increase senescence-associated secretory proteins compared to cells expressing MAFAWT. These results implicate a conserved mechanism of accelerated islet aging and senescence in promoting diabetes in MAFAS64F carriers in a sex-biased manner.


Assuntos
Senescência Celular , Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Fatores de Transcrição Maf Maior/metabolismo , Animais , Animais Geneticamente Modificados , Glicemia/metabolismo , Sinalização do Cálcio , Linhagem Celular , Dano ao DNA , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Humanos , Insulina/sangue , Células Secretoras de Insulina/patologia , Fatores de Transcrição Maf Maior/genética , Masculino , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Fenótipo , Caracteres Sexuais , Fatores Sexuais
17.
Cell Metab ; 32(6): 1028-1040.e4, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33207245

RESUMO

Isolated reports of new-onset diabetes in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2 is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into ß cells via co-expression of its canonical cell entry factors, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2); however, their expression in human pancreas has not been clearly defined. We analyzed six transcriptional datasets of primary human islet cells and found that ACE2 and TMPRSS2 were not co-expressed in single ß cells. In pancreatic sections, ACE2 and TMPRSS2 protein was not detected in ß cells from donors with and without diabetes. Instead, ACE2 protein was expressed in islet and exocrine tissue microvasculature and in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. These findings reduce the likelihood that SARS-CoV-2 directly infects ß cells in vivo through ACE2 and TMPRSS2.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Diabetes Mellitus/metabolismo , SARS-CoV-2/fisiologia , Serina Endopeptidases/metabolismo , Internalização do Vírus , Enzima de Conversão de Angiotensina 2/análise , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/complicações , COVID-19/genética , Células Cultivadas , Complicações do Diabetes/genética , Complicações do Diabetes/metabolismo , Diabetes Mellitus/genética , Expressão Gênica , Humanos , Células Secretoras de Insulina/metabolismo , Camundongos , Microvasos/metabolismo , Pâncreas/metabolismo , RNA Mensageiro/análise , RNA Mensageiro/genética , Serina Endopeptidases/análise , Serina Endopeptidases/genética
18.
bioRxiv ; 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33106804

RESUMO

Reports of new-onset diabetes and diabetic ketoacidosis in individuals with COVID-19 have led to the hypothesis that SARS-CoV-2, the virus that causes COVID-19, is directly cytotoxic to pancreatic islet ß cells. This would require binding and entry of SARS-CoV-2 into host ß cells via cell surface co-expression of ACE2 and TMPRSS2, the putative receptor and effector protease, respectively. To define ACE2 and TMPRSS2 expression in the human pancreas, we examined six transcriptional datasets from primary human islet cells and assessed protein expression by immunofluorescence in pancreata from donors with and without diabetes. ACE2 and TMPRSS2 transcripts were low or undetectable in pancreatic islet endocrine cells as determined by bulk or single cell RNA sequencing, and neither protein was detected in α or ß cells from these donors. Instead, ACE2 protein was expressed in the islet and exocrine tissue microvasculature and also found in a subset of pancreatic ducts, whereas TMPRSS2 protein was restricted to ductal cells. The absence of significant ACE2 and TMPRSS2 co-expression in islet endocrine cells reduces the likelihood that SARS-CoV-2 directly infects pancreatic islet ß cells through these cell entry proteins.

19.
Cell Rep ; 27(6): 1755-1768.e4, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067461

RESUMO

Preterm birth (PTB) is a syndrome with many origins. Among them, infection or inflammation are major risk factors for PTB; however, local defense mechanisms to mount anti-inflammatory responses against inflammation-induced PTB are poorly understood. Here, we show that endothelial TLR4 in the decidual bed is critical for sensing inflammation during pregnancy because mice with endothelial Tlr4 deletion are resistant to lipopolysaccharide (LPS)-induced PTB. Under inflammatory conditions, IL-6 is readily expressed in decidual endothelial cells with signal transducer and activator of transcription 3 (Stat3) phosphorylation in perivascular stromal cells, which then regulates expression of anti-inflammatory IL-10. Our observation that administration of an IL-10 neutralizing antibody predisposing mice to PTB shows IL-10's anti-inflammatory role to prevent PTB. We show that the integration of endothelial and perivascular stromal signaling can determine pregnancy outcomes. These findings highlight a role for endothelial TLR4 in inflammation-induced PTB and may offer a potential therapeutic target to prevent PTB.


Assuntos
Decídua/patologia , Células Endoteliais/metabolismo , Terapia de Alvo Molecular , Nascimento Prematuro/patologia , Nascimento Prematuro/prevenção & controle , Animais , Comunicação Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Deleção de Genes , Inflamação/patologia , Interleucina-10/metabolismo , Interleucina-6/farmacologia , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos , Camundongos , NF-kappa B/metabolismo , Ovário/metabolismo , Gravidez , Fator de Transcrição STAT3/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia , Receptor 4 Toll-Like/metabolismo
20.
Sci Adv ; 5(12): eaax0292, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31840061

RESUMO

The mechanistic basis for the biogenesis of peptide hormones and growth factors is poorly understood. Here, we show that the conserved endoplasmic reticulum membrane translocon-associated protein α (TRAPα), also known as signal sequence receptor 1, plays a critical role in the biosynthesis of insulin. Genetic analysis in the nematode Caenorhabditis elegans and biochemical studies in pancreatic ß cells reveal that TRAPα deletion impairs preproinsulin translocation while unexpectedly disrupting distal steps in insulin biogenesis including proinsulin processing and secretion. The association of common intronic single-nucleotide variants in the human TRAPα gene with susceptibility to type 2 diabetes and pancreatic ß cell dysfunction suggests that impairment of preproinsulin translocation and proinsulin trafficking may contribute to the pathogenesis of type 2 diabetes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Insulina/biossíntese , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores de Peptídeos/metabolismo , Animais , Estresse do Retículo Endoplasmático , Insulina/metabolismo , Secreção de Insulina , Precursores de Proteínas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA