Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Exp Bot ; 72(3): 917-927, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33161434

RESUMO

Nitro-fatty acids are generated from the interaction of unsaturated fatty acids and nitric oxide (NO)-derived molecules. The endogenous occurrence and modulation throughout plant development of nitro-linolenic acid (NO2-Ln) and nitro-oleic acid (NO2-OA) suggest a key role for these molecules in initial development stages. In addition, NO2-Ln content increases significantly in stress situations and induces the expression of genes mainly related to abiotic stress, such as genes encoding members of the heat shock response family and antioxidant enzymes. The promoter regions of NO2-Ln-induced genes are also involved mainly in stress responses. These findings confirm that NO2-Ln is involved in plant defense processes against abiotic stress conditions via induction of the chaperone network and antioxidant systems. NO2-Ln signaling capacity lies mainly in its electrophilic nature and allows it to mediate a reversible post-translational modification called nitroalkylation, which is capable of modulating protein function. NO2-Ln is a NO donor that may be involved in NO signaling events and is able to generate S-nitrosoglutathione, the major reservoir of NO in cells and a key player in NO-mediated abiotic stress responses. This review describes the current state of the art regarding the essential role of nitro-fatty acids as signaling mediators in development and abiotic stress processes.


Assuntos
Ácidos Graxos , Nitratos , Óxido Nítrico , Plantas , Estresse Fisiológico
2.
J Exp Bot ; 70(17): 4429-4439, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31111892

RESUMO

Nitric oxide (NO) is an active redox molecule involved in the control of a wide range of functions integral to plant biology. For instance, NO is implicated in seed germination, floral development, senescence, stomatal closure, and plant responses to stress. NO usually mediates signaling events via interactions with different biomolecules, for example the modulation of protein functioning through post-translational modifications (NO-PTMs). S-nitrosation is a reversible redox NO-PTM that consists of the addition of NO to a specific thiol group of a cysteine residue, leading to formation of S-nitrosothiols (SNOs). SNOs are more stable than NO and therefore they can extend and spread the in vivo NO signaling. The development of robust and reliable detection methods has allowed the identification of hundreds of S-nitrosated proteins involved in a wide range of physiological and stress-related processes in plants. For example, SNOs have a physiological function in plant development, hormone metabolism, nutrient uptake, and photosynthesis, among many other processes. The role of S-nitrosation as a regulator of plant responses to salinity and drought stress through the modulation of specific protein targets has also been well established. However, there are many S-nitrosated proteins that have been identified under different abiotic stresses for which the specific roles have not yet been identified. In this review, we examine current knowledge of the specific role of SNOs in the signaling events that lead to plant responses to abiotic stress, with a particular focus on examples where their functions have been well characterized at the molecular level.


Assuntos
Fenômenos Fisiológicos Vegetais , Proteínas de Plantas/metabolismo , S-Nitrosotióis/metabolismo , Transdução de Sinais , Plantas/metabolismo , Estresse Fisiológico
3.
J Exp Bot ; 69(14): 3425-3438, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29506191

RESUMO

Nitric oxide (NO) has emerged as an essential biological messenger in plant biology that usually transmits its bioactivity by post-translational modifications such as S-nitrosylation, the reversible addition of an NO group to a protein cysteine residue leading to S-nitrosothiols (SNOs). In recent years, SNOs have risen as key signalling molecules mainly involved in plant response to stress. Chief among SNOs is S-nitrosoglutathione (GSNO), generated by S-nitrosylation of the key antioxidant glutathione (GSH). GSNO is considered the major NO reservoir and a phloem mobile signal that confers to NO the capacity to be a long-distance signalling molecule. GSNO is able to regulate protein function and gene expression, resulting in a key role for GSNO in fundamental processes in plants, such as development and response to a wide range of environmental stresses. In addition, GSNO is also able to regulate the total SNO pool and, consequently, it could be considered the storage of NO in cells that may control NO signalling under basal and stress-related responses. Thus, GSNO function could be crucial during plant response to environmental stresses. Besides the importance of GSNO in plant biology, its mode of action has not been widely discussed in the literature. In this review, we will first discuss the GSNO turnover in cells and secondly the role of GSNO as a mediator of physiological and stress-related processes in plants, highlighting those aspects for which there is still some controversy.


Assuntos
Óxido Nítrico/metabolismo , Fenômenos Fisiológicos Vegetais , S-Nitrosoglutationa/metabolismo , Transdução de Sinais , Estresse Fisiológico
4.
Nitric Oxide ; 2018 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-29601928

RESUMO

Nitro-fatty acids (NO2-FAs) are formed from the reaction between nitrogen dioxide (NO2) and mono and polyunsaturated fatty acids. Knowledge concerning NO2-FAs has significantly increased within a few years ago and the beneficial actions of these species uncovered in animal systems have led to consider them as molecules with therapeutic potential. Based on their nature and structure, NO2-FAs have the ability to release nitric oxide (NO) in aqueous environments and the capacity to mediate post-translational modifications (PTM) by nitroalkylation. Recently, based on the potential of these NO-derived molecules in the animal field, the endogenous occurrence of nitrated-derivatives of linolenic acid (NO2-Ln) was assessed in plant species. Moreover and through RNA-seq technology, it was shown that NO2-Ln can induce a large set of heat-shock proteins (HSPs) and different antioxidant systems suggesting this molecule may launch antioxidant and defence responses in plants. Furthermore, the capacity of this nitro-fatty acid to release NO has also been demonstrated. In view of this background, here we offer an overview on the biological properties described for NO2-FAs in plants and the potential of these molecules to be considered new key intermediaries of NO metabolism in the plant field.

5.
J Exp Bot ; 66(19): 5983-96, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26116026

RESUMO

The ascorbate-glutathione cycle is a metabolic pathway that detoxifies hydrogen peroxide and involves enzymatic and non-enzymatic antioxidants. Proteomic studies have shown that some enzymes in this cycle such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDAR), and glutathione reductase (GR) are potential targets for post-translational modifications (PMTs) mediated by nitric oxide-derived molecules. Using purified recombinant pea peroxisomal MDAR and cytosolic and chloroplastic GR enzymes produced in Escherichia coli, the effects of peroxynitrite (ONOO(-)) and S-nitrosoglutathione (GSNO) which are known to mediate protein nitration and S-nitrosylation processes, respectively, were analysed. Although ONOO(-) and GSNO inhibit peroxisomal MDAR activity, chloroplastic and cytosolic GR were not affected by these molecules. Mass spectrometric analysis of the nitrated MDAR revealed that Tyr213, Try292, and Tyr345 were exclusively nitrated to 3-nitrotyrosine by ONOO(-). The location of these residues in the structure of pea peroxisomal MDAR reveals that Tyr345 is found at 3.3 Å of His313 which is involved in the NADP-binding site. Site-directed mutagenesis confirmed Tyr345 as the primary site of nitration responsible for the inhibition of MDAR activity by ONOO(-). These results provide new insights into the molecular regulation of MDAR which is deactivated by nitration and S-nitrosylation. However, GR was not affected by ONOO(-) or GSNO, suggesting the existence of a mechanism to conserve redox status by maintaining the level of reduced GSH. Under a nitro-oxidative stress induced by salinity (150mM NaCl), MDAR expression (mRNA, protein, and enzyme activity levels) was increased, probably to compensate the inhibitory effects of S-nitrosylation and nitration on the enzyme. The present data show the modulation of the antioxidative response of key enzymes in the ascorbate-glutathione cycle by nitric oxide (NO)-PTMs, thus indicating the close involvement of NO and reactive oxygen species metabolism in antioxidant defence against nitro-oxidative stress situations in plants.


Assuntos
Glutationa Redutase/genética , NADH NADPH Oxirredutases/genética , Óxido Nítrico/metabolismo , Pisum sativum/genética , Proteínas de Plantas/genética , Processamento de Proteína Pós-Traducional , Cloroplastos/enzimologia , Citosol/enzimologia , Glutationa Redutase/metabolismo , NADH NADPH Oxirredutases/metabolismo , Pisum sativum/enzimologia , Pisum sativum/metabolismo , Proteínas de Plantas/metabolismo , Análise de Sequência de DNA
6.
Ann Bot ; 116(4): 637-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25814060

RESUMO

BACKGROUND AND AIMS: Pepper (Capsicum annuum, Solanaceae) fruits are consumed worldwide and are of great economic importance. In most species ripening is characterized by important visual and metabolic changes, the latter including emission of volatile organic compounds associated with respiration, destruction of chlorophylls, synthesis of new pigments (red/yellow carotenoids plus xanthophylls and anthocyanins), formation of pectins and protein synthesis. The involvement of nitric oxide (NO) in fruit ripening has been established, but more work is needed to detail the metabolic networks involving NO and other reactive nitrogen species (RNS) in the process. It has been reported that RNS can mediate post-translational modifications of proteins, which can modulate physiological processes through mechanisms of cellular signalling. This study therefore examined the potential role of NO in nitration of tyrosine during the ripening of California sweet pepper. METHODS: The NO content of green and red pepper fruit was determined spectrofluorometrically. Fruits at the breaking point between green and red coloration were incubated in the presence of NO for 1 h and then left to ripen for 3 d. Profiles of nitrated proteins were determined using an antibody against nitro-tyrosine (NO2-Tyr), and profiles of nitrosothiols were determined by confocal laser scanning microscopy. Nitrated proteins were identified by 2-D electrophoresis and MALDI-TOF/TOF analysis. KEY RESULTS: Treatment with NO delayed the ripening of fruit. An enhancement of nitrosothiols and nitroproteins was observed in fruit during ripening, and this was reversed by the addition of exogenous NO gas. Six nitrated proteins were identified and were characterized as being involved in redox, protein, carbohydrate and oxidative metabolism, and in glutamate biosynthesis. Catalase was the most abundant nitrated protein found in both green and red fruit. CONCLUSIONS: The RNS profile reported here indicates that ripening of pepper fruit is characterized by an enhancement of S-nitrosothiols and protein tyrosine nitration. The nitrated proteins identified have important functions in photosynthesis, generation of NADPH, proteolysis, amino acid biosynthesis and oxidative metabolism. The decrease of catalase in red fruit implies a lower capacity to scavenge H2O2, which would promote lipid peroxidation, as has already been reported in ripe pepper fruit.


Assuntos
Capsicum/crescimento & desenvolvimento , Nitrocompostos/metabolismo , Proteínas de Plantas/metabolismo , Tirosina/metabolismo , Capsicum/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteômica
7.
Ann Bot ; 116(4): 679-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25808658

RESUMO

BACKGROUND AND AIMS: The development of seedlings involves many morphological, physiological and biochemical processes, which are controlled by many factors. Some reactive oxygen and nitrogen species (ROS and RNS, respectively) are implicated as signal molecules in physiological and phytopathological processes. Pepper (Capsicum annuum) is a very important crop and the goal of this work was to provide a framework of the behaviour of the key elements in the metabolism of ROS and RNS in the main organs of pepper during its development. METHODS: The main seedling organs (roots, hypocotyls and green cotyledons) of pepper seedlings were analysed 7, 10 and 14 d after germination. Activity and gene expression of the main enzymatic antioxidants (catalase, ascorbate-glutathione cycle enzymes), NADP-generating dehydrogenases and S-nitrosoglutathione reductase were determined. Cellular distribution of nitric oxide ((·)NO), superoxide radical (O2 (·-)) and peroxynitrite (ONOO(-)) was investigated using confocal laser scanning microscopy. KEY RESULTS: The metabolism of ROS and RNS during pepper seedling development was highly regulated and showed significant plasticity, which was co-ordinated among the main seedling organs, resulting in correct development. Catalase showed higher activity in the aerial parts of the seedling (hypocotyls and green cotyledons) whereas roots of 7-d-old seedlings contained higher activity of the enzymatic components of the ascorbate glutathione cycle, NADP-isocitrate dehydrogenase and NADP-malic enzyme. CONCLUSIONS: There is differential regulation of the metabolism of ROS, nitric oxide and NADP dehydrogenases in the different plant organs during seedling development in pepper in the absence of stress. The metabolism of ROS and RNS seems to contribute significantly to plant development since their components are involved directly or indirectly in many metabolic pathways. Thus, specific molecules such as H2O2 and NO have implications for signalling, and their temporal and spatial regulation contributes to the success of seedling establishment.


Assuntos
Capsicum/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/metabolismo , Capsicum/enzimologia , Capsicum/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Ácido Peroxinitroso/metabolismo , Plântula/crescimento & desenvolvimento , Superóxidos/metabolismo
8.
Biochim Biophys Acta ; 1830(11): 4981-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23860243

RESUMO

BACKGROUND: Protein tyrosine nitration is a post-translational modification (PTM) mediated by nitric oxide-derived molecules. Peroxisomes are oxidative organelles in which the presence of nitric oxide (NO) has been reported. METHODS: We studied peroxisomal nitroproteome of pea leaves by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and proteomic approaches. RESULTS: Proteomic analysis of peroxisomes from pea leaves detected a total of four nitro-tyrosine immunopositive proteins by using an antibody against nitrotyrosine. One of these proteins was found to be the NADH-dependent hydroxypyruvate reductase (HPR). The in vitro nitration of peroxisomal samples caused a 65% inhibition of HPR activity. Analysis of recombinant peroxisomal NADH-dependent HPR1 activity from Arabidopsis in the presence of H2O2, NO, GSH and peroxynitrite showed that the ONOO(-) molecule caused the highest inhibition of activity (51% at 5mM SIN-1), with 5mM H2O2 having no inhibitory effect. Mass spectrometric analysis of the nitrated recombinant HPR1 enabled us to determine that, among the eleven tyrosine present in this enzyme, only Tyr-97, Tyr-108 and Tyr-198 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Site-directed mutagenesis confirmed Tyr198 as the primary site of nitration responsible for the inhibition on the enzymatic activity by peroxynitrite. CONCLUSION: These findings suggest that peroxisomal HPR is a target of peroxynitrite which provokes a loss of function. GENERAL SIGNIFICANCE: This is the first report demonstrating the peroxisomal NADH-dependent HPR activity involved in the photorespiration pathway is regulated by tyrosine nitration, indicating that peroxisomal NO metabolism may contribute to the regulation of physiological processes under no-stress conditions.


Assuntos
Hidroxipiruvato Redutase/antagonistas & inibidores , Peroxissomos/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Evolução Molecular , Glutationa/farmacologia , Peróxido de Hidrogênio/farmacologia , Hidroxipiruvato Redutase/genética , Hidroxipiruvato Redutase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Nitratos/metabolismo , Oxirredução/efeitos dos fármacos , Pisum sativum/enzimologia , Pisum sativum/genética , Pisum sativum/metabolismo , Peroxissomos/efeitos dos fármacos , Peroxissomos/genética , Ácido Peroxinitroso/genética , Ácido Peroxinitroso/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Tirosina/análogos & derivados , Tirosina/genética
9.
J Exp Bot ; 65(2): 527-38, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24288182

RESUMO

Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO-) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150 mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.


Assuntos
Ascorbato Peroxidases/metabolismo , Citosol/enzimologia , Pisum sativum/enzimologia , Tirosina/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Cromatografia Líquida , Eletroforese em Gel de Poliacrilamida , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Nitrosação/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Pisum sativum/efeitos dos fármacos , Pisum sativum/fisiologia , Peptídeos/química , Ácido Peroxinitroso/farmacologia , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , S-Nitrosoglutationa/farmacologia , Cloreto de Sódio/farmacologia , Estresse Fisiológico/efeitos dos fármacos
10.
Cell Rep ; 43(4): 114091, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38607914

RESUMO

Nitric oxide (NO) is a gasotransmitter required in a broad range of mechanisms controlling plant development and stress conditions. However, little is known about the specific role of this signaling molecule during lipid storage in the seeds. Here, we show that NO is accumulated in developing embryos and regulates the fatty acid profile through the stabilization of the basic/leucine zipper transcription factor bZIP67. NO and nitro-linolenic acid target and accumulate bZIP67 to induce the downstream expression of FAD3 desaturase, which is misregulated in a non-nitrosylable version of the protein. Moreover, the post-translational modification of bZIP67 is reversible by the trans-denitrosylation activity of peroxiredoxin IIE and defines a feedback mechanism for bZIP67 redox regulation. These findings provide a molecular framework to control the seed fatty acid profile caused by NO, and evidence of the in vivo functionality of nitro-fatty acids during plant developmental signaling.


Assuntos
Proteínas de Arabidopsis , Fatores de Transcrição de Zíper de Leucina Básica , Ácidos Graxos , Peroxirredoxinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Metabolismo dos Lipídeos , Óxido Nítrico/metabolismo , Peroxirredoxinas/metabolismo , Processamento de Proteína Pós-Traducional , Sementes/metabolismo
11.
J Exp Bot ; 64(4): 1121-34, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23362300

RESUMO

Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence.


Assuntos
Pisum sativum/metabolismo , Raízes de Plantas/metabolismo , Tirosina/metabolismo , Morte Celular , Citosol/metabolismo , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Ensaios Enzimáticos , Isocitrato Desidrogenase/metabolismo , Isoenzimas/análise , Isoenzimas/metabolismo , Microscopia Confocal , Óxido Nítrico/metabolismo , Oxirredução , Estresse Oxidativo , Pisum sativum/enzimologia , Pisum sativum/crescimento & desenvolvimento , Ácido Peroxinitroso/metabolismo , Raízes de Plantas/enzimologia , Caules de Planta/enzimologia , Caules de Planta/metabolismo , Proteoma/análise , Proteoma/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Tempo
12.
Nitric Oxide ; 29: 30-3, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23266784

RESUMO

Protein tyrosine nitration is a post-translational modification (PTM) mediated by reactive nitrogen species (RNS) and it is a new area of research in higher plants. Previously, it was demonstrated that the exposition of sunflower (Helianthus annuus L.) seedlings to high temperature (HT) caused both oxidative and nitrosative stress. The nitroproteome analysis under this stress condition showed the induction of 13 tyrosine-nitrated proteins being the carbonic anhydrase (CA) one of these proteins. The analysis of CA activity under high temperature showed that this stress inhibited the CA activity by a 43%. To evaluate the effect of nitration on the CA activity in sunflower it was used 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent. Thus the CA activity was inhibited by 41%. In silico analysis of the pea CA protein sequence suggests that Tyr(205) is the most likely potential target for nitration.


Assuntos
Anidrases Carbônicas/metabolismo , Helianthus/enzimologia , Óxido Nítrico/metabolismo , Temperatura , Tirosina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Modelos Moleculares , Molsidomina/análogos & derivados , Molsidomina/farmacologia , Processamento de Proteína Pós-Traducional , Estresse Fisiológico , Tirosina/química
13.
Plant Cell Environ ; 35(2): 281-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21414013

RESUMO

Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.


Assuntos
Antioxidantes/metabolismo , Capsicum/fisiologia , NADPH Desidrogenase/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/fisiologia , Aclimatação , Ácido Ascórbico/metabolismo , Capsicum/enzimologia , Capsicum/genética , Temperatura Baixa , Glutationa/metabolismo , Homeostase , Peroxidação de Lipídeos , Oxirredução , Fenótipo , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia , Fatores de Tempo
14.
Anal Bioanal Chem ; 404(5): 1495-503, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22773228

RESUMO

In this work, a method for the determination of trace nitrotyrosine (NO(2)Tyr) and tyrosine (Tyr) in Arabidopsis thaliana cell cultures is proposed. Due to the complexity of the resulting extracts after protein precipitation and enzymatic digestion and the strong electrospray signal suppression displayed in the detection of both Tyr and NO(2)Tyr from raw A. thaliana cell culture extracts, a straightforward sample cleanup step was proposed. It was based on the use of mixed-mode solid-phase extraction (SPE) using MCX-type cartridges (Strata™-X-C), prior to identification and quantitation using fast liquid chromatography-electrospray time-of-flight mass spectrometry. Unambiguous confirmation of both amino acids was accomplished with accurate mass measurements (with errors lower than 2 ppm) of each protonated molecule along with a characteristic fragment ion for each species. Recovery studies were accomplished to evaluate the performance of the SPE sample preparation step obtaining average recoveries in the range 92-101%. Limit of quantitation obtained for NO(2)Tyr in A. thaliana extracts was 3 nmol L(-1). Finally, the proposed method was applied to evaluate stress conditions of the plant upon different concentrations of peroxynitrite, a protein-nitrating compound, which induces the nitration of Tyr at the nanomolar range. Detection and confirmation of the compounds demonstrated the usefulness of the proposed approach.


Assuntos
Arabidopsis/química , Extração em Fase Sólida/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Tirosina/análogos & derivados , Cromatografia Líquida/métodos , Limite de Detecção , Tirosina/análise
15.
Antioxidants (Basel) ; 11(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36290592

RESUMO

The non-enzymatic interaction of polyunsaturated fatty acids with nitric oxide (NO) and derived species results in the formation of nitrated fatty acids (NO2-FAs). These signaling molecules can release NO, reversibly esterify with complex lipids, and modulate protein function through the post-translational modification called nitroalkylation. To date, NO2-FAs act as signaling molecules during plant development in plant systems and are involved in defense responses against abiotic stress conditions. In this work, the previously unknown storage biomolecules of NO2-FAs in Arabidopsis thaliana were identified. In addition, the distribution of NO2-FAs in storage biomolecules during plant development was determined, with phytosterol esters (SE) and TAGs being reservoir biomolecules in seeds, which were replaced by phospholipids and proteins in the vegetative, generative, and senescence stages. The detected esterified NO2-FAs were nitro-linolenic acid (NO2-Ln), nitro-oleic acid (NO2-OA), and nitro-linoleic acid (NO2-LA). The last two were detected for the first time in Arabidopsis. The levels of the three NO2-FAs that were esterified in both lipid and protein storage biomolecules showed a decreasing pattern throughout Arabidopsis development. Esterification of NO2-FAs in phospholipids and proteins highlights their involvement in both biomembrane dynamics and signaling processes, respectively, during Arabidopsis plant development.

16.
Antioxidants (Basel) ; 11(5)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35624836

RESUMO

Heat stress is one of the abiotic stresses that leads to oxidative stress. To protect themselves, yeast cells activate the antioxidant response, in which cytosolic peroxiredoxin Tsa1 plays an important role in hydrogen peroxide removal. Concomitantly, the activation of the heat shock response (HSR) is also triggered. Nitro-fatty acids are signaling molecules generated by the interaction of reactive nitrogen species with unsaturated fatty acids. These molecules have been detected in animals and plants. They exert their signaling function mainly through a post-translational modification called nitroalkylation. In addition, these molecules are closely related to the induction of the HSR. In this work, the endogenous presence of nitro-oleic acid (NO2-OA) in Saccharomyces cerevisiae is identified for the first time by LC-MS/MS. Both hydrogen peroxide levels and Tsa1 activity increased after heat stress with no change in protein content. The nitroalkylation of recombinant Tsa1 with NO2-OA was also observed. It is important to point out that cysteine 47 (peroxidatic) and cysteine 171 (resolving) are the main residues responsible for protein activity. Moreover, the in vivo nitroalkylation of Tsa1 peroxidatic cysteine disappeared during heat stress as the hydrogen peroxide generated in this situation caused the rupture of the NO2-OA binding to the protein and, thus, restored Tsa1 activity. Finally, the amino acid targets susceptible to nitroalkylation and the modulatory effect of this PTM on the enzymatic activity of Tsa1 are also shown in vitro and in vivo. This mechanism of response was faster than that involving the induction of genes and the synthesis of new proteins and could be considered as a key element in the fine-tuning regulation of defence mechanisms against oxidative stress in yeast.

17.
Plant Cell Environ ; 34(11): 1803-18, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21676000

RESUMO

High temperature (HT) is considered a major abiotic stress that negatively affects both vegetative and reproductive growth. Whereas the metabolism of reactive oxygen species (ROS) is well established under HT, less is known about the metabolism of reactive nitrogen species (RNS). In sunflower (Helianthus annuus L.) seedlings exposed to HT, NO content as well as S-nitrosoglutathione reductase (GSNOR) activity and expression were down-regulated with the simultaneous accumulation of total S-nitrosothiols (SNOs) including S-nitrosoglutathione (GSNO). However, the content of tyrosine nitration (NO(2) -Tyr) studied by high-performance liquid chromatography with tandem mass spectrometry (LC-MS/MS) and by confocal laser scanning microscope was induced. Nitroproteome analysis under HT showed that this stress induced the protein expression of 13 tyrosine-nitrated proteins. Among the induced proteins, ferredoxin-NADP reductase (FNR) was selected to evaluate the effect of nitration on its activity after heat stress and in vitro conditions using 3-morpholinosydnonimine (SIN-1) (peroxynitrite donor) as the nitrating agent, the FNR activity being inhibited. Taken together, these results suggest that HT augments SNOs, which appear to mediate protein tyrosine nitration, inhibiting FNR, which is involved in the photosynthesis process.


Assuntos
Ferredoxina-NADP Redutase/antagonistas & inibidores , Helianthus/metabolismo , Temperatura Alta , S-Nitrosotióis/metabolismo , Estresse Fisiológico , Tirosina/análogos & derivados , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Arginina/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/citologia , Helianthus/enzimologia , Helianthus/genética , Hipocótilo/citologia , Hipocótilo/metabolismo , Peróxidos Lipídicos/metabolismo , Nitrato Redutase , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Nitritos/metabolismo , Nitrosação , Ácido Peroxinitroso/metabolismo , Fotossíntese , Proteômica , S-Nitrosoglutationa/metabolismo , Superóxidos/metabolismo , Tirosina/metabolismo
18.
J Exp Bot ; 62(6): 1803-13, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21172815

RESUMO

Nitric oxide (NO) and related molecules such as peroxynitrite, S-nitrosoglutathione (GSNO), and nitrotyrosine, among others, are involved in physiological processes as well in the mechanisms of response to stress conditions. In sunflower seedlings exposed to five different adverse environmental conditions (low temperature, mechanical wounding, high light intensity, continuous light, and continuous darkness), key components of the metabolism of reactive nitrogen species (RNS) and reactive oxygen species (ROS), including the enzyme activities L-arginine-dependent nitric oxide synthase (NOS), S-nitrosogluthathione reductase (GSNOR), nitrate reductase (NR), catalase, and superoxide dismutase, the content of lipid hydroperoxide, hydrogen peroxide, S-nitrosothiols (SNOs), the cellular level of NO, GSNO, and GSNOR, and protein tyrosine nitration [nitrotyrosine (NO(2)-Tyr)] were analysed. Among the stress conditions studied, mechanical wounding was the only one that caused a down-regulation of NOS and GSNOR activities, which in turn provoked an accumulation of SNOs. The analyses of the cellular content of NO, GSNO, GSNOR, and NO(2)-Tyr by confocal laser scanning microscopy confirmed these biochemical data. Therefore, it is proposed that mechanical wounding triggers the accumulation of SNOs, specifically GSNO, due to a down-regulation of GSNOR activity, while NO(2)-Tyr increases. Consequently a process of nitrosative stress is induced in sunflower seedlings and SNOs constitute a new wound signal in plants.


Assuntos
Aldeído Oxirredutases/metabolismo , Regulação da Expressão Gênica de Plantas , Helianthus/enzimologia , Espécies Reativas de Nitrogênio/metabolismo , S-Nitrosotióis/metabolismo , Estresse Fisiológico , Temperatura Baixa , Homeostase , Peróxido de Hidrogênio/metabolismo , Hipocótilo/enzimologia , Luz , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Nitritos/metabolismo , Estresse Mecânico
19.
Antioxidants (Basel) ; 9(6)2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503179

RESUMO

Environmental stresses negatively affect plant growth, development and crop productivity [...].

20.
Front Plant Sci ; 11: 962, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714353

RESUMO

Nitro-fatty acids (NO2-FAs) are novel molecules resulting from the interaction of unsaturated fatty acids and nitric oxide (NO) or NO-related molecules. In plants, it has recently been described that NO2-FAs trigger an antioxidant and a defence response against stressful situations. Among the properties of NO2-FAs highlight the ability to release NO therefore modulating specific protein targets through post-translational modifications (NO-PTMs). Thus, based on the capacity of NO2-FAs to act as physiological NO donors and using high-accuracy mass-spectrometric approaches, herein, we show that endogenous nitro-linolenic acid (NO2-Ln) can modulate S-nitrosoglutathione (GSNO) biosynthesis in Arabidopsis. The incubation of NO2-Ln with GSH was analyzed by LC-MS/MS and the in vitro synthesis of GSNO was noted. The in vivo confirmation of this behavior was carried out by incubating Arabidopsis plants with 15N-labeled NO2-Ln throughout the roots, and 15N-labeled GSNO (GS15NO) was detected in the leaves. With the aim to go in depth in the relation of NO2-FA and GSNO in plants, Arabidopsis alkenal reductase mutants (aer mutants) which modulate NO2-FAs levels were used. Our results constitute the first evidence of the modulation of a key NO biological reservoir in plants (GSNO) by these novel NO2-FAs, increasing knowledge about S-nitrosothiols and GSNO-signaling pathways in plants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA