Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Angew Chem Int Ed Engl ; : e202411133, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39091222

RESUMO

The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.

2.
Antimicrob Agents Chemother ; 66(9): e0059222, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35975988

RESUMO

Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.


Assuntos
Mycobacterium tuberculosis , Tuberculose , 2,2'-Dipiridil/farmacologia , Animais , Antioxidantes/farmacologia , Catalase , Cisteína , Ferro , Quelantes de Ferro/farmacologia , Camundongos , Moxifloxacina/farmacologia , NAD , Espécies Reativas de Oxigênio/metabolismo , Enxofre/farmacologia , Tioureia , Tuberculose/microbiologia
3.
Nat Chem Biol ; 15(2): 169-178, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30643283

RESUMO

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism. Here, we report a small molecule that generates ROS in different mammalian cells. We used this molecule to detect, characterize and study oxidized PS in mammalian cells. We developed a chemical-genetic screen to identify enzymes that regulate oxidized PS in mammalian cells and found that the lipase ABHD12 hydrolyzes oxidized PS. We validated these findings in different physiological settings including primary peritoneal macrophages and brains from Abhd12-/- mice under inflammatory stress, and in the process, we functionally annotated an enzyme regulating oxidized PS in vivo.


Assuntos
Monoacilglicerol Lipases/fisiologia , Fosfatidilserinas/metabolismo , Animais , Linhagem Celular , Humanos , Lipase/metabolismo , Macrófagos Peritoneais/metabolismo , Camundongos , Monoacilglicerol Lipases/metabolismo , Oxirredução , Estresse Oxidativo , Fosfatidilserinas/fisiologia , Células RAW 264.7 , Espécies Reativas de Oxigênio
4.
Chembiochem ; 21(8): 1201-1205, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-31709695

RESUMO

Although sulfur dioxide (SO2 ) finds widespread use in the food industry as its hydrated sulfite form, a number of aspects of SO2 biology remain to be completely understood. Of the tools available for intracellular enhancement of SO2 levels, most suffer from poor cell permeability and a lack of control over SO2 release. We report 1,2-cyclic sulfite diesters as a new class of reliable SO2 donors that dissociate in buffer through nucleophilic displacement to produce SO2 with tunable release profiles. We provide data in support of the suitability of these SO2 donors to enhance intracellular SO2 levels more efficiently than sodium bisulfite, the most commonly used SO2 donor for cellular studies.


Assuntos
Neoplasias do Colo/metabolismo , Ésteres/síntese química , Sulfitos/síntese química , Dióxido de Enxofre/metabolismo , Neoplasias do Colo/patologia , Humanos , Células Tumorais Cultivadas
5.
Bioconjug Chem ; 30(3): 751-759, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30615427

RESUMO

Fluoroquinolones (FQs) are among the front-line antibiotics used to treat severe infections caused by Gram-negative bacteria. However, recently, due to toxicity concerns, their use has been severely restricted. Hence, efforts to direct delivery of this antibiotic specifically to bacteria/site of infection are underway. Here, we report a strategy that uses a bacterial enzyme for activation of a prodrug to generate the active antibiotic. The ciprofloxacin-latent fluorophore conjugate 1, which is designed as a substrate for nitroreductase (NTR), a bacterial enzyme, was synthesized. Upon activation by NTR, release of Ciprofloxacin (CIP) as well as a fluorescence reporter was observed. We provide evidence for the prodrug permeating bacteria to generate a fluorescent signal and we found no evidence for activation in mammalian cells supporting selectivity of activation within bacteria. As a testament to its efficacy, 1 was found to have potent bactericidal activity nearly identical to CIP and significantly reduced the bacterial burden in a neutropenic mouse thigh infection model, again, at comparable potency with CIP, a clinically used FQ. Thus, together, we have developed a small molecule that facilitates bacteria-specific fluoroquinolone delivery.


Assuntos
Antibacterianos/síntese química , Bactérias/efeitos dos fármacos , Ciprofloxacina/síntese química , Nitrorredutases/metabolismo , Animais , Bactérias/enzimologia , Catálise , Ativação Enzimática , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana
6.
IUBMB Life ; 70(9): 826-835, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761645

RESUMO

The emergence of drug resistance has posed a major challenge to treatment of tuberculosis worldwide. The new drug candidates in the pipeline are few and therefore there is an urgent need to develop antimycobacterials with novel mechanisms of action. Maintenance of redox homeostasis is integral to mycobacterial survival and growth. Therefore, perturbation of this equilibrium can result in irreversible stress induction and inhibition of growth. Herein, we review a number of small molecules that have either been designed to induce redox stress or were found to do so after their discovery. A number of these small molecules are quite effective against drug-resistant mycobacterial strains and thus offer scope for exploration of potentially new mechanism of action. The progress in redox-guided antimycobacterial compounds and the challenges towards clinical applications are reviewed. © 2018 IUBMB Life, 70(9):826-835, 2018.


Assuntos
Antituberculosos/farmacologia , Descoberta de Drogas , Mycobacterium tuberculosis/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Tuberculose/tratamento farmacológico , Animais , Desenho de Fármacos , Humanos , Oxirredução , Tuberculose/microbiologia
7.
Chembiochem ; 18(15): 1529-1534, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28470863

RESUMO

Nitric oxide (NO) plays significant signalling roles in cells; the controlled generation of NO is of therapeutic relevance. Although a number of methods for the delivery and detection of NO are available, these events are typically mutually exclusive. Furthermore, the efficiency of delivery of NO can be compromised by detection technologies that consume NO. Here, we report FLUORO/NO, an esterase-activated diazeniumdiolate-based NO donor with an in-built fluorescence reporter. We demonstrate that this compound is capable of enhancing NO within cells in a dose-dependent manner, accompanied by a similar increase in fluorescence. The compatibility of this tool to study NO-mediated signalling as well as NO-mediated stress is demonstrated. FLUORO/NO is a convenient tool that shows NO-like activity and allows monitoring of NO release. This tool will help interrogate the redox biology of NO.


Assuntos
Cumarínicos/farmacologia , Doadores de Óxido Nítrico/farmacologia , Triazenos/farmacologia , Triazinas/farmacologia , Umbeliferonas/farmacologia , Carboxilesterase/metabolismo , Cumarínicos/síntese química , Dano ao DNA , Fluorescência , Células HEK293 , Células HeLa , Humanos , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/síntese química , Nitritos/análise , Guanilil Ciclase Solúvel/metabolismo , Estereoisomerismo , Triazenos/síntese química , Triazinas/síntese química , Umbeliferonas/síntese química , Valeratos/metabolismo
8.
Bioorg Med Chem Lett ; 25(13): 2694-7, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25981687

RESUMO

Drug resistant infections are becoming common worldwide and new strategies for drug development are necessary. Here, we report the synthesis and evaluation of 2,4-dinitrophenylsulfonamides, which are donors of sulfur dioxide (SO2), a reactive sulfur species, as methicillin-resistant Staphylococcus aureus (MRSA) inhibitors. N-(3-Methoxyphenyl)-2,4-dinitro-N-(prop-2-yn-1-yl)benzenesulfonamide (5e) was found to have excellent in vitro MRSA inhibitory potency. This compound is cell permeable and treatment of MRSA cells with 5e depleted intracellular thiols and enhanced oxidative species both results consistent with a mechanism involving thiol activation to produce SO2.


Assuntos
Antibacterianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Pró-Fármacos/farmacologia , Dióxido de Enxofre/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Desenho de Fármacos , Humanos , Testes de Sensibilidade Microbiana , Pró-Fármacos/síntese química , Pró-Fármacos/química , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Dióxido de Enxofre/química
9.
Org Biomol Chem ; 13(8): 2399-406, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25563212

RESUMO

Sulfur dioxide (SO2) is a gaseous environmental pollutant which is routinely used in industry as a preservative and antimicrobial. Recent data suggests that SO2 may have value as a therapeutic agent. However, due to its gaseous nature, localizing SO2 generation is challenging. Herein, various 1,3-dihydrobenzo[c]thiophene 2,2-dioxides (benzosulfones) were prepared as candidates for photochemically activated sulfur dioxide (SO2) generation. These compounds were found to be stable in buffer but were photolysed upon irradiation with UV light to generate SO2. Our data indicates that photolysis of benzosulfones depends on substituents, and that the presence of electron donating groups results in an enhanced yield of SO2.

10.
Nitric Oxide ; 43: 8-16, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25124221

RESUMO

Nitric oxide (NO) is a reactive gaseous free radical which mediates numerous biological processes. At elevated levels, NO is found to be toxic to cancers and hence, a number of strategies for site-directed delivery of NO to cancers are in development during the past two decades. More recently, the focus of research has been to, in conjunction with other cancer drugs deliver NO to cancers for its secondary effects including inhibition of cellular drug efflux pumps. Among the various approaches toward site-selective delivery of exogenous NO sources, enzyme activated nitric oxide donors belonging to the diazeniumdiolate category afford unique advantages including exquisite control of rates of NO generation and selectivity of NO production. For this prodrug approach, enzymes including esterase, glutathione/glutathione S-transferase, DT-diaphorase, and nitroreductase are utilized. Here, we review the design and development of various approaches to enzymatic site-directed delivery of NO to cancers and their potential.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Óxido Nítrico/administração & dosagem , Relação Dose-Resposta a Droga , Humanos , Óxido Nítrico/uso terapêutico , Pró-Fármacos/uso terapêutico
11.
J Org Chem ; 79(19): 9413-7, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25207805

RESUMO

In order to understand the structural aspects of stabilization of hydroquinones and their ability to generate reactive oxygen species (ROS), we designed and synthesized a series of 6-aryl-2,3-dihydro-1,4-benzoquinones. These compounds equilibrate with the corresponding 6-aryl-1,4-dihydroxybenzenes in an organic medium; a linear free energy relationship analysis gave ρ = +2.37, suggesting that this equilibrium was sensitive to electronic effects. The propensity of the compound to enolize appears to determine ROS-generating capability, thus offering scope for tunable ROS generation.

12.
Chem Commun (Camb) ; 60(13): 1727-1730, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38240148

RESUMO

Hydrogen sulfide (H2S) and associated sulfur species known as persulfide or sulfane sulfur are considered among the first responders to oxidative stress. However, tools that reliably generate these species without any potentially toxic byproducts are limited, and even fewer report the generation of a persulfide. Here, using a latent fluorophore embedded with N-acetylcysteine persulfide, we report a new tool that is cleaved by esterase to produce a persulfide as well as a fluorescence reporter without any electrophilic byproducts. The rate of formation of the fluorescence reporter is nearly identical to the rate of formation of the persulfide suggesting that the use of this probe eliminates the need for secondary assays that report persulfide formation. Symptomatic with persulfide generation, the newly developed donor was able to protect chondrocyte cells from oxidative stress.


Assuntos
Esterases , Sulfeto de Hidrogênio , Fluorescência , Sulfetos , Enxofre
13.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260651

RESUMO

Most front-line tuberculosis drugs are ineffective against hypoxic non-replicating drug-tolerant Mycobacterium tuberculosis (Mtb) contributing to phenotypic antimicrobial resistance (AMR). This is largely due to the poor permeability in the thick and waxy cell wall of persister cells, leading to diminished drug accumulation and reduced drug-target engagement. Here, using an "arm-to-disarm" prodrug approach, we demonstrate that non-replicating Mtb persisters can be sensitized to Moxifloxacin (MXF), a front-line TB drug. We design and develop a series of nitroheteroaryl MXF prodrugs that are substrates for bacterial nitroreductases (NTR), a class of enzymes that are over-expressed in hypoxic Mtb. Enzymatic activation involves electron-transfer to the nitroheteroaryl compound followed by protonation via water that contributes to the rapid cleavage rate of the protective group by NTR to produce the active drug. Phenotypic and genotypic data are fully consistent with MXF-driven lethality of the prodrug in Mtb with the protective group being a relatively innocuous bystander. The prodrug increased intracellular concentrations of MXF than MXF alone and is more lethal than MXF in non-replicating persisters. Hence, arming drugs to improve permeability, accumulation and drug-target engagement is a new therapeutic paradigm to disarm phenotypic AMR.

14.
Redox Biol ; 75: 103285, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-39128229

RESUMO

The ability of Mycobacterium tuberculosis (Mtb) to tolerate nitric oxide (•NO) and superoxide (O2•-) produced by phagocytes contributes to its success as a human pathogen. Recombination of •NO and O2•- generates peroxynitrite (ONOO-), a potent oxidant produced inside activated macrophages causing lethality in diverse organisms. While the response of Mtb toward •NO and O2•- is well established, how Mtb responds to ONOO- remains unclear. Filling this knowledge gap is important to understand the persistence mechanisms of Mtb during infection. We synthesized a series of compounds that generate both •NO and O2•-, which should combine to produce ONOO-. From this library, we identified CJ067 that permeates Mtb to reliably enhance intracellular ONOO- levels. CJ067-exposed Mtb strains, including multidrug-resistant (MDR) and extensively drug-resistant (XDR) clinical isolates, exhibited dose-dependent, long-lasting oxidative stress and growth inhibition. In contrast, Mycobacterium smegmatis (Msm), a fast-growing, non-pathogenic mycobacterial species, maintained redox balance and growth in response to intracellular ONOO-. RNA-sequencing with Mtb revealed that CJ067 induces antioxidant machinery, sulphur metabolism, metal homeostasis, and a 4Fe-4S cluster repair pathway (suf operon). CJ067 impaired the activity of the 4Fe-4S cluster-containing TCA cycle enzyme, aconitase, and diminished bioenergetics of Mtb. Work with Mtb strains defective in SUF and IscS involved in Fe-S cluster biogenesis pathways showed that both systems cooperatively protect Mtb from intracellular ONOO- in vitro and inducible nitric oxide synthase (iNOS)-dependent growth inhibition during macrophage infection. Thus, Mtb is uniquely sensitive to intracellular ONOO- and targeting Fe-S cluster homeostasis is expected to promote iNOS-dependent host immunity against tuberculosis (TB).


Assuntos
Metabolismo Energético , Homeostase , Proteínas Ferro-Enxofre , Mycobacterium tuberculosis , Oxirredução , Ácido Peroxinitroso , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/efeitos dos fármacos , Ácido Peroxinitroso/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Humanos , Óxido Nítrico/metabolismo , Estresse Oxidativo , Mycobacterium smegmatis/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/efeitos dos fármacos , Superóxidos/metabolismo , Macrófagos/metabolismo , Macrófagos/microbiologia , Tuberculose/microbiologia , Tuberculose/metabolismo
15.
Bioorg Med Chem Lett ; 23(21): 5964-7, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24050886

RESUMO

Due to the involvement of nitric oxide (NO) in numerous and diverse physiological processes, site-directed delivery of therapeutic NO in order to minimize unwanted side-effects is necessary. O(2)-(4-Nitrobenzyl) diazeniumdiolates are designed as substrates for Escherichia coli nitroreductase (NTR), an enzyme that is frequently used to facilitate directed delivery of cytotoxic species to cancers. O(2)-(4-Nitrobenzyl) diazeniumdiolates are found to be stable in aqueous buffer but are metabolized by NTR to produce NO. A cell viability assay revealed that cytotoxic effects of O(2)-(4-nitrobenzyl)1-(2-methylpiperidin-1-yl)diazen-1-ium-1,2-diolate (4b) towards two cancer cell lines is significantly enhanced in the presence of NTR suggesting the potential for use of this compound in nitric oxide-based directed prodrug therapy.


Assuntos
Antineoplásicos/metabolismo , Compostos Azo/metabolismo , Escherichia coli/enzimologia , Doadores de Óxido Nítrico/metabolismo , Nitrorredutases/metabolismo , Pró-Fármacos/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Compostos Azo/química , Compostos Azo/farmacologia , Linhagem Celular Tumoral , Humanos , Neoplasias/tratamento farmacológico , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia
16.
Biochim Biophys Acta Mol Cell Res ; 1870(2): 119388, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36372112

RESUMO

Aging involves the time-dependent deterioration of physiological functions attributed to various intracellular and extracellular factors. Cellular senescence is akin to aging and involves alteration in redox homeostasis. This is primarily marked by increased reactive oxygen/nitrogen species (ROS/RNS), inflammatory gene expression, and senescence-associated beta-galactosidase activity, all hallmarks of aging. It is proposed that gasotransmitters which include hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), may affect redox homeostasis during senescence. H2S has been independently shown to induce DNA damage and suppress oxidative stress. While an increase in NO levels during aging is well established, the role of H2S has remained controversial. To understand the role of H2S during aging, we evaluated H2S homeostasis in non-senescent and senescent cells, using a combination of direct measurements with a fluorescent reporter dye (WSP-5) and protein sulfhydration analysis. The free intracellular H2S and total protein sulfhydration levels are high during senescence, concomitant to cystathionine gamma-lyase (CSE) expression induction. Using lentiviral shRNA-mediated expression knockdown, we identified that H2S contributed by CSE alters global gene expression, which regulates key inflammatory processes during cellular senescence. We propose that H2S decreases inflammation during cellular senescence by reducing phosphorylation of IκBα and the p65 subunit of nuclear factor kappa B (NF-κB). H2S was also found to reduce NO levels, a significant source of nitrosative stress during cellular senescence. Overall, we establish H2S as a key gasotransmitter molecule that regulates inflammatory phenotype and nitrosative stress during cellular senescence.


Assuntos
Sulfeto de Hidrogênio , Estresse Nitrosativo , Humanos , Senescência Celular , Sulfeto de Hidrogênio/farmacologia , Sulfeto de Hidrogênio/metabolismo , Inflamação/genética , NF-kappa B/metabolismo , Óxido Nítrico , Espécies Reativas de Oxigênio , Cistationina gama-Liase/metabolismo
17.
Chem Commun (Camb) ; 59(23): 3415-3418, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36852903

RESUMO

Nitroxyl (HNO) is a short-lived mediator of cell signalling and can enhance the sulfane sulfur pool, a cellular antioxidant reservoir, by reacting with hydrogen sulfide (H2S). Here, we report esterase-activated HNO-generators that are suitable for tunable HNO release and the design of these donors allows for real-time monitoring of HNO release. These tools will help gain a better understanding of the cross-talk among short-lived gaseous signalling molecules that have emerged as major players in health and disease.


Assuntos
Óxidos de Nitrogênio , Transdução de Sinais , Fluorescência
18.
Chem Commun (Camb) ; 59(85): 12751-12754, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37811588

RESUMO

The cross-talk among reductive and oxidative species (redox cross-talk), especially those derived from sulfur, nitrogen and oxygen, influence several physiological processes including aging. One major hallmark of aging is cellular senescence, which is associated with chronic systemic inflammation. Here, we report a chemical tool that generates nitoxyl (HNO) upon activation by ß-galactosidase, an enzyme that is over-expressed in senescent cells. In a radiation-induced senescence model, the HNO donor suppressed reactive oxygen species (ROS) in a hydrogen sulfide (H2S)-dependent manner. Hence, the newly developed tool provides insights into redox cross-talk and establishes the foundation for new interventions that modulate levels of these species to mitigate oxidative stress and inflammation.


Assuntos
Inflamação , Óxidos de Nitrogênio , Humanos , Oxirredução , Senescência Celular , beta-Galactosidase
19.
Microbiol Spectr ; : e0477322, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976008

RESUMO

Finding new therapeutic strategies against Gram-negative pathogens such as Acinetobacter baumannii is challenging. Starting from diphenyleneiodonium (dPI) salts, which are moderate Gram-positive antibacterials, we synthesized a focused heterocyclic library and found a potent inhibitor of patient-derived multidrug-resistant Acinetobacter baumannii strains that significantly reduced bacterial burden in an animal model of infection caused by carbapenem-resistant Acinetobacter baumannii (CRAB), listed as a priority 1 critical pathogen by the World Health Organization. Next, using advanced chemoproteomics platforms and activity-based protein profiling (ABPP), we identified and biochemically validated betaine aldehyde dehydrogenase (BetB), an enzyme that is involved in the metabolism and maintenance of osmolarity, as a potential target for this compound. Together, using a new class of heterocyclic iodonium salts, a potent CRAB inhibitor was identified, and our study lays the foundation for the identification of new druggable targets against this critical pathogen. IMPORTANCE Discovery of novel antibiotics targeting multidrug-resistant (MDR) pathogens such as A. baumannii is an urgent, unmet medical need. Our work has highlighted the potential of this unique scaffold to annihilate MDR A. baumannii alone and in combination with amikacin both in vitro and in animals, that too without inducing resistance. Further in depth analysis identified central metabolism to be a putative target. Taken together, these experiments lay down the foundation for effective management of infections caused due to highly MDR pathogens.

20.
Chem Res Toxicol ; 25(12): 2670-7, 2012 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-23106594

RESUMO

Attachment of glutathione (GSH) to cysteine residues in proteins (S-glutathionylation) is a reversible post-translational modification that can profoundly alter protein structure and function. Often serving in a protective role, for example, by temporarily saving protein thiols from irreversible oxidation and inactivation, glutathionylation can be identified and semiquantitatively assessed using anti-GSH antibodies, thought to be specific for recognition of the S-glutathionylation modification. Here, we describe an alternate mechanism of protein glutathionylation in which the sulfur atoms of the GSH and the protein's thiol group are covalently bound via a cross-linking agent, rather than through a disulfide bond. This form of thiol cross-linking has been shown to occur and has been confirmed by mass spectrometry at the solution chemistry level, as well as in experiments documenting the potent antiproliferative activity of the bis-diazeniumdiolate Double JS-K in H1703 cells in vitro and in vivo. The modification is recognized by the anti-GSH antibody as if it were authentic S-glutathionylation, requiring mass spectrometry to distinguish between them.


Assuntos
Antineoplásicos/farmacologia , Compostos Azo/farmacologia , Glutationa/metabolismo , Piperazinas/farmacologia , Acetilcisteína/química , Actinas/metabolismo , Animais , Antineoplásicos/química , Compostos Azo/química , Linhagem Celular Tumoral , Dinitrofluorbenzeno/análogos & derivados , Dinitrofluorbenzeno/química , Feminino , Glutationa/química , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Óxido Nítrico/metabolismo , Oxigênio/metabolismo , Piperazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA