Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 291(12): 6494-506, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26814131

RESUMO

Caveolin-1 associates with the endo/lysosomal machinery of cells in culture, suggesting that it functions at these organelles independently of its contribution to cell surface caveolae. Here we explored mice lacking caveolin-1 specifically in the retinal pigment epithelium (RPE). The RPE supports neighboring photoreceptors via diurnal phagocytosis of spent photoreceptor outer segment fragments. Like mice lacking caveolin-1 globally, (RPE)CAV1(-/-) mice developed a normal RPE and neural retina but showed reduced rod photoreceptor light responses, indicating that lack of caveolin-1 affects photoreceptor function in a non-cell-autonomous manner. (RPE)CAV1(-/-) RPE in situ showed normal particle engulfment but delayed phagosome clearance and reversed diurnal profiles of levels and activities of lysosomal enzymes. Therefore, eliminating caveolin-1 specifically impairs phagolysosomal degradation by the RPE in vivo. Endogenous caveolin-1 was recruited to maturing phagolysosomes in RPE cells in culture. Consistent with these in vivo data, a moderate increase (to ∼ 2.5-fold) or decrease (by half) of caveolin-1 protein levels in RPE cells in culture was sufficient to accelerate or impair phagolysosomal digestion, respectively. A mutant form of caveolin-1 that fails to reach the cell surface augmented degradation like wild-type caveolin-1. Acidic lysosomal pH and increased protease activity are essential for digestion. We show that halving caveolin-1 protein levels significantly alkalinized lysosomal pH and decreased lysosomal enzyme activities. Taken together, our results reveal a novel role for intracellular caveolin-1 in modulating phagolysosomal function. Moreover, they show, for the first time, that organellar caveolin-1 significantly affects tissue functionality in vivo.


Assuntos
Caveolina 1/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Animais , Catepsina D/metabolismo , Linhagem Celular , Ritmo Circadiano , Lisossomos/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Fagossomos/metabolismo , Transporte Proteico , Proteólise , Ratos , Receptores da Transferrina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Sus scrofa , Visão Ocular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA