Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(10): 2062-2077.e17, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37075755

RESUMO

Entry of enveloped viruses into cells is mediated by viral fusogenic proteins that drive membrane rearrangements needed for fusion between viral and target membranes. Skeletal muscle development also requires membrane fusion events between progenitor cells to form multinucleated myofibers. Myomaker and Myomerger are muscle-specific cell fusogens but do not structurally or functionally resemble classical viral fusogens. We asked whether the muscle fusogens could functionally substitute for viral fusogens, despite their structural distinctiveness, and fuse viruses to cells. We report that engineering of Myomaker and Myomerger on the membrane of enveloped viruses leads to specific transduction of skeletal muscle. We also demonstrate that locally and systemically injected virions pseudotyped with the muscle fusogens can deliver µDystrophin to skeletal muscle of a mouse model of Duchenne muscular dystrophy and alleviate pathology. Through harnessing the intrinsic properties of myogenic membranes, we establish a platform for delivery of therapeutic material to skeletal muscle.


Assuntos
Bioengenharia , Lentivirus , Proteínas de Membrana , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Camundongos , Fusão Celular , Fusão de Membrana , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/metabolismo , Músculo Esquelético/virologia , Bioengenharia/métodos , Distrofia Muscular de Duchenne/terapia , Modelos Animais de Doenças , Tropismo Viral , Lentivirus/genética
3.
Proc Natl Acad Sci U S A ; 120(46): e2306129120, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37939083

RESUMO

Controlling the biodistribution of protein- and nanoparticle-based therapeutic formulations remains challenging. In vivo library selection is an effective method for identifying constructs that exhibit desired distribution behavior; library variants can be selected based on their ability to localize to the tissue or compartment of interest despite complex physiological challenges. Here, we describe further development of an in vivo library selection platform based on self-assembling protein nanoparticles encapsulating their own mRNA genomes (synthetic nucleocapsids or synNCs). We tested two distinct libraries: a low-diversity library composed of synNC surface mutations (45 variants) and a high-diversity library composed of synNCs displaying miniproteins with binder-like properties (6.2 million variants). While we did not identify any variants from the low-diversity surface library that yielded therapeutically relevant changes in biodistribution, the high-diversity miniprotein display library yielded variants that shifted accumulation toward lungs or muscles in just two rounds of in vivo selection. Our approach should contribute to achieving specific tissue homing patterns and identifying targeting ligands for diseases of interest.


Assuntos
Biblioteca de Peptídeos , Proteínas , Distribuição Tecidual , Nucleocapsídeo , Mutação
4.
Cell ; 143(7): 1040-2, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21183068

RESUMO

The lack of appropriate animal models has hampered efforts to develop therapies for Duchenne muscular dystrophy (DMD). A new mouse model lacking both dystrophin and telomerase (Sacco et al., 2010) closely mimics the pathological progression of human DMD and shows that muscle stem cell activity is a key determinant of disease severity.

5.
Mol Ther ; 30(6): 2176-2185, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35143959

RESUMO

Gene editing has shown promise for correcting or bypassing dystrophin mutations in Duchenne muscular dystrophy (DMD). However, preclinical studies have focused on young animals with limited muscle fibrosis and wasting, thereby favoring muscle transduction, myonuclear editing, and prevention of disease progression. Here, we explore muscle-specific dystrophin gene editing following intramuscular delivery of AAV6:CK8e-CRISPR/SaCas9 in 3- and 8-year-old dystrophic CXMD dogs and provide a qualitative comparison to AAV6:CK8e-micro-dystrophin gene replacement at 6 weeks post-treatment. Gene editing restored the dystrophin reading frame in ∼1.3% of genomes and in up to 4.0% of dystrophin transcripts following excision of a 105-kb mutation containing region spanning exons 6-8. However, resulting dystrophin expression levels and effects on muscle pathology were greater with the use of micro-dystrophin gene transfer. This study demonstrates that our muscle-specific multi-exon deletion strategy can correct a frequently mutated region of the dystrophin gene in an aged large animal DMD model, but underscores that further enhancements are required to reach efficiencies comparable to AAV micro-dystrophin. Our observations also indicate that treatment efficacy and state of muscle pathology at the time of intervention are linked, suggesting the need for additional methodological optimizations related to age and disease progression to achieve relevant clinical translation of CRISPR-based therapies to all DMD patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Envelhecimento , Animais , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Progressão da Doença , Cães , Distrofina/genética , Edição de Genes/métodos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
6.
PLoS Genet ; 16(11): e1009179, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33175853

RESUMO

Gene therapy approaches for DMD using recombinant adeno-associated viral (rAAV) vectors to deliver miniaturized (or micro) dystrophin genes to striated muscles have shown significant progress. However, concerns remain about the potential for immune responses against dystrophin in some patients. Utrophin, a developmental paralogue of dystrophin, may provide a viable treatment option. Here we examine the functional capacity of an rAAV-mediated microutrophin (µUtrn) therapy in the mdx4cv mouse model of DMD. We found that rAAV-µUtrn led to improvement in dystrophic histopathology & mostly restored the architecture of the neuromuscular and myotendinous junctions. Physiological studies of tibialis anterior muscles indicated peak force maintenance, with partial improvement of specific force. A fundamental question for µUtrn therapeutics is not only can it replace critical functions of dystrophin, but whether full-length utrophin impacts the therapeutic efficacy of the smaller, highly expressed µUtrn. As such, we found that µUtrn significantly reduced the spacing of the costameric lattice relative to full-length utrophin. Further, immunostaining suggested the improvement in dystrophic pathophysiology was largely influenced by favored correction of fast 2b fibers. However, unlike µUtrn, µdystrophin (µDys) expression did not show this fiber type preference. Interestingly, µUtrn was better able to protect 2a and 2d fibers in mdx:utrn-/- mice than in mdx4cv mice where the endogenous full-length utrophin was most prevalent. Altogether, these data are consistent with the role of steric hindrance between full-length utrophin & µUtrn within the sarcolemma. Understanding the stoichiometry of this effect may be important for predicting clinical efficacy.


Assuntos
Terapia Genética/métodos , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/terapia , Utrofina/uso terapêutico , Animais , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos mdx , Microscopia Eletrônica , Contração Muscular , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/ultraestrutura , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Junção Neuromuscular/patologia , Junção Neuromuscular/ultraestrutura , Sarcolema/patologia , Sarcolema/ultraestrutura , Utrofina/genética
7.
Mol Ther ; 29(3): 1070-1085, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33160075

RESUMO

Gene editing is often touted as a permanent method for correcting mutations, but its long-term benefits in Duchenne muscular dystrophy (DMD) may depend on sufficiently high editing efficiencies to halt muscle degeneration. Here, we explored the persistence of dystrophin expression following recombinant adeno-associated virus serotype 6 (rAAV6):CRISPR-Cas9-mediated multi-exon deletion/reframing in systemically injected 2- and 11-week-old dystrophic mice and show that induction of low dystrophin levels persists for several months in cardiomyocytes but not in skeletal muscles, where myofibers remain susceptible to necrosis and regeneration. Whereas gene-correction efficiency in both muscle types was enhanced with increased ratios of guide RNA (gRNA)-to-nuclease vectors, obtaining high dystrophin levels in skeletal muscles via multi-exon deletion remained challenging. In contrast, when AAV-microdystrophin was codelivered with editing components, long-term gene-edited dystrophins persisted in both muscle types. These results suggest that the high rate of necrosis and regeneration in skeletal muscles, compared with the relative stability of dystrophic cardiomyocytes, caused the rapid loss of edited genomes. Consequently, stable dystrophin expression in DMD skeletal muscles will require either highly efficient gene editing or the use of cotreatments that decrease skeletal muscle degeneration.


Assuntos
Distrofina/genética , Edição de Genes , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Distrofia Muscular Animal/prevenção & controle , Distrofia Muscular de Duchenne/prevenção & controle , Miocárdio/metabolismo , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animais de Doenças , Distrofina/metabolismo , Terapia Genética/métodos , Vetores Genéticos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Guia de Cinetoplastídeos
8.
Hum Mol Genet ; 28(R1): R102-R107, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31238336

RESUMO

Muscular dystrophy (MD) is a group of progressive genetic diseases affecting the musculature that are characterized by inflammatory infiltrates, necrosis and connective tissue and fat replacement of the affected muscles. Unfortunately, treatments do not exist for the vast majority of MD patients. Adeno-associated viral vector (AAV)-based gene therapy is thus emerging as a potential treatment for many types of MD. Treatments strategies based on AAV are being adapted for replacement of mutant disease-causing genes, knockdown of dominant disease-causing genes using antisense oligonucleotides or inhibitory RNAs, delivery of gene editing tools such as clustered regularly interspaced short palindromic repeats/Cas9 and effecting alterations in pre-mRNA splicing and by manipulating expression levels of modifier genes. Translational and clinical trial work focused on these types of AAV treatments for Duchenne MD, various limb girdle MDs, myotonic dystrophy 1, facioscapulohumeral MD, dysferlinopathies and congenital MDs are discussed here, with a focus on recent studies, pre-clinical large animal work and many promising ongoing and upcoming AAV clinical trials.


Assuntos
Dependovirus/genética , Terapia Genética , Vetores Genéticos/genética , Distrofias Musculares/genética , Distrofias Musculares/terapia , Animais , Terapia Combinada , Edição de Genes , Regulação da Expressão Gênica , Predisposição Genética para Doença , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Transdução Genética , Transgenes
9.
J Virol ; 94(4)2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31748399

RESUMO

Influenza A virus (IAV) causes significant morbidity and mortality, despite the availability of viral vaccines. The efficacy of live attenuated influenza vaccines (LAIVs) has been especially poor in recent years. One potential reason is that the master donor virus (MDV), on which all LAIVs are based, contains either the internal genes of the 1960 A/Ann Arbor/6/60 or the 1957 A/Leningrad/17/57 H2N2 viruses (i.e., they diverge considerably from currently circulating strains). We previously showed that introduction of the temperature-sensitive (ts) residue signature of the AA/60 MDV into a 2009 pandemic A/California/04/09 H1N1 virus (Cal/09) results in only 10-fold in vivo attenuation in mice. We have previously shown that the ts residue signature of the Russian A/Leningrad/17/57 H2N2 LAIV (Len LAIV) more robustly attenuates the prototypical A/Puerto Rico/8/1934 (PR8) H1N1 virus. In this work, we therefore introduced the ts signature from Len LAIV into Cal/09. This new Cal/09 LAIV is ts in vitro, highly attenuated (att) in mice, and protects from a lethal homologous challenge. In addition, when our Cal/09 LAIV with PR8 hemagglutinin and neuraminidase was used to vaccinate mice, it provided enhanced protection against a wild-type Cal/09 challenge relative to a PR8 LAIV with the same attenuating mutations. These findings suggest it may be possible to improve the efficacy of LAIVs by better matching the sequence of the MDV to currently circulating strains.IMPORTANCE Seasonal influenza infection remains a major cause of disease and death, underscoring the need for improved vaccines. Among current influenza vaccines, the live attenuated influenza vaccine (LAIV) is unique in its ability to elicit T-cell immunity to the conserved internal proteins of the virus. Despite this, LAIV has shown limited efficacy in recent years. One possible reason is that the conserved, internal genes of all current LAIVs derive from virus strains that were isolated between 1957 and 1960 and that, as a result, do not resemble currently circulating influenza viruses. We have therefore developed and tested a new LAIV, based on a currently circulating pandemic strain of influenza. Our results show that this new LAIV elicits improved protective immunity compared to a more conventional LAIV.


Assuntos
Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Influenza Humana/genética , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais/imunologia , Cães , Feminino , Células HEK293 , Humanos , Imunogenicidade da Vacina/imunologia , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H2N2/genética , Vírus da Influenza A Subtipo H2N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos C57BL , Vacinas Atenuadas/imunologia
10.
Proc Natl Acad Sci U S A ; 115(30): 7741-7746, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29987034

RESUMO

Duchenne muscular dystrophy (DMD) is a rare, muscle degenerative disease resulting from the absence of the dystrophin protein. DMD is characterized by progressive loss of muscle fibers, muscle weakness, and eventually loss of ambulation and premature death. Currently, there is no cure for DMD and improved methods of disease monitoring are crucial for the development of novel treatments. In this study, we describe a new method of assessing disease progression noninvasively in the mdx model of DMD. The reporter mice, which we term the dystrophic Degeneration Reporter strains, contain an inducible CRE-responsive luciferase reporter active in mature myofibers. In these mice, muscle degeneration is reflected in changes in the level of luciferase expression, which can be monitored using noninvasive, bioluminescence imaging. We monitored the natural history and disease progression in these dystrophic report mice and found that decreases in luciferase signals directly correlated with muscle degeneration. We further demonstrated that this reporter strain, as well as a previously reported Regeneration Reporter strain, successfully reveals the effectiveness of a gene therapy treatment following systemic administration of a recombinant adeno-associated virus-6 (rAAV-6) encoding a microdystrophin construct. Our data demonstrate the value of these noninvasive imaging modalities for monitoring disease progression and response to therapy in mouse models of muscular dystrophy.


Assuntos
Dependovirus , Distrofina , Terapia Genética , Fibras Musculares Esqueléticas , Distrofia Muscular de Duchenne , Transdução Genética , Animais , Distrofina/biossíntese , Distrofina/genética , Humanos , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia
11.
Proc Natl Acad Sci U S A ; 115(39): E9182-E9191, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30181272

RESUMO

In gene therapy for Duchenne muscular dystrophy there are two potential immunological obstacles. An individual with Duchenne muscular dystrophy has a genetic mutation in dystrophin, and therefore the wild-type protein is "foreign," and thus potentially immunogenic. The adeno-associated virus serotype-6 (AAV6) vector for delivery of dystrophin is a viral-derived vector with its own inherent immunogenicity. We have developed a technology where an engineered plasmid DNA is delivered to reduce autoimmunity. We have taken this approach into humans, tolerizing to myelin proteins in multiple sclerosis and to proinsulin in type 1 diabetes. Here, we extend this technology to a model of gene therapy to reduce the immunogenicity of the AAV vector and of the wild-type protein product that is missing in the genetic disease. Following gene therapy with systemic administration of recombinant AAV6-microdystrophin to mdx/mTRG2 mice, we demonstrated the development of antibodies targeting dystrophin and AAV6 capsid in control mice. Treatment with the engineered DNA construct encoding microdystrophin markedly reduced antibody responses to dystrophin and to AAV6. Muscle force in the treated mice was also improved compared with control mice. These data highlight the potential benefits of administration of an engineered DNA plasmid encoding the delivered protein to overcome critical barriers in gene therapy to achieve optimal functional gene expression.


Assuntos
DNA , Dependovirus/genética , Terapia Genética/métodos , Vetores Genéticos , Força Muscular/genética , Distrofia Muscular de Duchenne/terapia , Plasmídeos , Animais , DNA/genética , DNA/farmacocinética , Modelos Animais de Doenças , Distrofina/genética , Distrofina/imunologia , Distrofina/metabolismo , Vetores Genéticos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos mdx , Força Muscular/imunologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo , Plasmídeos/genética , Plasmídeos/farmacologia
12.
Hum Mol Genet ; 27(17): 2978-2985, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29790927

RESUMO

Mutation of the gene encoding dystrophin leads to Duchenne and Becker muscular dystrophy (DMD and BMD). Currently, dystrophin is thought to function primarily as a structural protein, connecting the muscle cell actin cytoskeleton to the extra-cellular matrix. In addition to this structural role, dystrophin also plays an important role as a scaffold that organizes an array of signaling proteins including sodium, potassium, and calcium channels, kinases, and nitric oxide synthase (nNOS). Many of these signaling proteins are linked to dystrophin via syntrophin, an adapter protein that is known to bind directly to two sites in the carboxyl terminal region of dystrophin. A search of the dystrophin sequence revealed three additional potential syntrophin binding sites (SBSs) within the spectrin-like repeat (SLR) region of dystrophin. Binding assays revealed that the site at SLR 17 bound specifically to the α isoform of syntrophin while the site at SLR 22 bound specifically to the ß-syntrophins. The SLR 17 α-SBS contained the core sequence known to be required for nNOS-dystrophin interaction. In vitro and in vivo assays indicate that α-syntrophin facilitates the nNOS-dystrophin interaction at this site rather than nNOS binding directly to dystrophin as previously reported. The identification of multiple SBSs within the SLR region of dystrophin demonstrates that this region functions as a signaling scaffold. The signaling role of the SLR region of dystrophin will need to be considered for effective gene replacement or exon skipping based DMD/BMD therapies.


Assuntos
Proteínas Associadas à Distrofina/metabolismo , Distrofina/metabolismo , Óxido Nítrico Sintase Tipo I/fisiologia , Sequências Repetitivas de Aminoácidos , Espectrina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas Associadas à Distrofina/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Homologia de Sequência , Espectrina/química
13.
Hum Mol Genet ; 27(12): 2090-2100, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29618008

RESUMO

Delivery of miniaturized dystrophin genes via adeno-associated viral vectors is one leading approach in development to treat Duchenne muscular dystrophy. Here we directly compared the functionality of five mini- and micro-dystrophins via skeletal muscle-specific transgenic expression in dystrophin-deficient mdx mice. We evaluated their ability to rescue defects in the microtubule network, passive stiffness and contractility of skeletal muscle. Transgenic mdx mice expressing the short dystrophin isoform Dp116 served as a negative control. All mini- and micro-dystrophins restored elevated detyrosinated α-tubulin and microtubule density of mdx muscle to values not different from C57BL/10, however, only mini-dystrophins restored the transverse component of the microtubule lattice back to C57BL/10. Passive stiffness values in mdx muscles expressing mini- or micro-dystrophins were not different from C57BL/10. While all mini- and micro-dystrophins conferred significant protection from eccentric contraction-induced force loss in vivo and ex vivo compared to mdx, removal of repeats two and three resulted in less protection from force drop caused by eccentric contraction ex vivo. Our data reveal subtle yet significant differences in the relative functionalities for different therapeutic constructs of miniaturized dystrophin in terms of protection from ex vivo eccentric contraction-induced force loss and restoration of an organized microtubule lattice.


Assuntos
Distrofina/genética , Microtúbulos/genética , Distrofia Muscular de Duchenne/genética , Tubulina (Proteína)/genética , Animais , Modelos Animais de Doenças , Distrofina/deficiência , Terapia Genética , Humanos , Camundongos , Camundongos Endogâmicos mdx/genética , Camundongos Transgênicos , Microtúbulos/patologia , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia
15.
Mol Ther ; 27(3): 623-635, 2019 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-30718090

RESUMO

Gene therapies using adeno-associated viral (AAV) vectors have advanced into clinical trials for several diseases, including Duchenne muscular dystrophy (DMD). A limitation of AAV is the carrying capacity (∼5 kb) available for genes and regulatory cassettes (RCs). These size constraints are problematic for the 2.2-Mb dystrophin gene. We previously designed a variety of miniaturized micro-dystrophins (µDys) that displayed significant, albeit incomplete, function in striated muscles. To develop µDys proteins with improved performance, we explored structural modifications of the dystrophin central rod domain. Eight µDys variants were studied that carried unique combinations of between four and six of the 24 spectrin-like repeats present in the full-length protein, as well as various hinge domains. Expression of µDys was regulated by a strong but compact muscle-restricted RC (CK8e) or by the ubiquitously active cytomegalovirus (CMV) RC. Vectors were evaluated by intramuscular injection and systemic delivery to dystrophic mdx4cv mice, followed by analysis of skeletal muscle pathophysiology. Two µDys designs were identified that led to increased force generation compared with previous µDys while also localizing neuronal nitric oxide synthase to the sarcolemma. An AAV vector expressing the smaller of these (µDys5) from the CK8e RC is currently being evaluated in a DMD clinical trial.


Assuntos
Dependovirus/genética , Distrofina/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Estriado/metabolismo , Músculo Estriado/patologia , Animais , Citomegalovirus/genética , Distrofina/genética , Terapia Genética/métodos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-30397065

RESUMO

Human adenovirus (AdV) can cause fatal disease in immune-suppressed individuals, but treatment options are limited, in part because the antiviral cytidine analog cidofovir (CDV) is nephrotoxic. The investigational agent brincidofovir (BCV) is orally bioavailable, nonnephrotoxic, and generates the same active metabolite, cidofovir diphosphate (CDVpp). However, its mechanism of action against AdV is poorly understood. Therefore, we have examined the effect of CDVpp on DNA synthesis by a purified adenovirus 5 (AdV5) DNA polymerase (Pol). CDVpp was incorporated into nascent DNA strands and promoted a nonobligate form of chain termination (i.e., AdV5 Pol can extend, albeit inefficiently, a DNA chain even after the incorporation of a first CDVpp molecule). Moreover, unlike a conventional mismatched base pair, misincorporated CDVpp was not readily excised by the AdV5 Pol. At elevated concentrations, CDVpp inhibited AdV5 Pol in a manner consistent with both chain termination and direct inhibition of Pol activity. Finally, a recombinant AdV5 was constructed, containing Pol mutations (V303I and T87I) that were selected following an extended passage of wild-type AdV5 in the presence of BCV. This virus had a 2.1-fold elevated 50% effective concentration (EC50) for BCV and a 1.9-fold increased EC50 for CDV; thus, these results confirmed that viral resistance to BCV and CDV can be attributed to mutations in the viral Pol. These findings show that the anti-AdV5 activity of CDV and BCV is mediated through the viral DNA Pol and that their antiviral activity may occur via both (nonobligate) chain termination and (at high concentration) direct inhibition of AdV5 Pol activity.


Assuntos
Adenovírus Humanos/efeitos dos fármacos , Antivirais/farmacologia , Cidofovir/farmacologia , Citosina/análogos & derivados , DNA Viral/antagonistas & inibidores , DNA Polimerase Dirigida por DNA/genética , Organofosfonatos/farmacologia , Proteínas Virais/genética , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/enzimologia , Adenovírus Humanos/genética , Adenovírus Humanos/isolamento & purificação , Citosina/metabolismo , Citosina/farmacologia , Primers do DNA/síntese química , Primers do DNA/genética , DNA Viral/biossíntese , DNA Viral/genética , DNA Polimerase Dirigida por DNA/metabolismo , Relação Dose-Resposta a Droga , Humanos , Cinética , Mutação , Organofosfonatos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
17.
Glia ; 66(12): 2563-2574, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30325063

RESUMO

Microglial activation, increased proinflammatory cytokine production, and a reduction in synaptic density are key pathological features associated with HIV-associated neurocognitive disorders (HAND). Even with combination antiretroviral therapy (cART), more than 50% of HIV-positive individuals experience some type of cognitive impairment. Although viral replication is inhibited by cART, HIV proteins such as Tat are still produced within the nervous system that are neurotoxic, involved in synapse elimination, and provoke enduring neuroinflammation. As complement deposition on synapses followed by microglial engulfment has been shown during normal development and disease to be a mechanism for pruning synapses, we have tested whether complement is required for the loss of synapses that occurs after a cortical Tat injection mouse model of HAND. In Tat-injected animals evaluated 7 or 28 days after injection, levels of early complement pathway components, C1q and C3, are significantly elevated and associated with microgliosis and a loss of synapses. However, C1qa knockout mice have the same level of Tat-induced synapse loss as wild-type (WT) mice, showing that the C1q-initiated classical complement cascade is not driving synapse removal during HIV1 Tat-induced neuroinflammation.


Assuntos
Disfunção Cognitiva/patologia , Complemento C1q/metabolismo , Infecções por HIV/complicações , Sinapses/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/farmacologia , Animais , Medula Óssea/metabolismo , Transplante de Medula Óssea , Proteínas de Ligação ao Cálcio/metabolismo , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/virologia , Complemento C1q/genética , Complemento C3/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Gliose/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Sinapses/metabolismo , Sinapses/patologia
18.
Hum Mol Genet ; 25(R1): R9-17, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26450518

RESUMO

Clinical trials represent a critical avenue for new treatment development, where early phases (I, I/II) are designed to test safety and effectiveness of new therapeutics or diagnostic indicators. A number of recent advances have spurred renewed optimism toward initiating clinical trials and developing refined therapies for the muscular dystrophies (MD's) and other myogenic disorders. MD's encompass a heterogeneous group of degenerative disorders often characterized by progressive muscle weakness and fragility. Many of these diseases result from mutations in genes encoding proteins of the dystrophin-glycoprotein complex (DGC). The most common and severe form among children is Duchenne muscular dystrophy, caused by mutations in the dystrophin gene, with an average life expectancy around 25 years of age. Another group of MD's referred to as the limb-girdle muscular dystrophies (LGMDs) can affect boys or girls, with different types caused by mutations in different genes. Mutation of the α-sarcoglycan gene, also a DGC component, causes LGMD2D and represents the most common form of LGMD. Early preclinical and clinical trial findings support the feasibility of gene therapy via recombinant adeno-associated viral vectors as a viable treatment approach for many MDs. In this mini-review, we present an overview of recent progress in clinical gene therapy trials of the MD's and touch upon promising preclinical advances.


Assuntos
Ensaios Clínicos como Assunto , Terapia Genética , Distrofias Musculares/terapia , Humanos
19.
Mol Ther ; 25(5): 1125-1131, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28416280

RESUMO

Duchenne muscular dystrophy (DMD) has been a major target for gene therapy development for nearly 30 years. DMD is among the most common genetic diseases, and isolation of the defective gene (DMD, or dystrophin) was a landmark discovery, as it was the first time a human disease gene had been cloned without knowledge of the protein product. Despite tremendous obstacles, including the enormous size of the gene and the large volume of muscle tissue in the human body, efforts to devise a treatment based on gene replacement have advanced steadily through the combined efforts of dozens of labs and patient advocacy groups. Progress in the development of DMD gene therapy has been well documented in Molecular Therapy over the past 20 years and will be reviewed here to highlight prospects for success in the imminent human clinical trials planned by several groups.


Assuntos
Dependovirus/genética , Distrofina/genética , Terapia Genética/métodos , Distrofia Muscular Animal/terapia , Distrofia Muscular de Duchenne/terapia , Animais , Dependovirus/metabolismo , Cães , Distrofina/química , Distrofina/metabolismo , Terapia Genética/história , Terapia Genética/tendências , Vetores Genéticos/química , Vetores Genéticos/metabolismo , História do Século XX , História do Século XXI , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular Animal/genética , Distrofia Muscular Animal/metabolismo , Distrofia Muscular Animal/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Domínios Proteicos
20.
Langmuir ; 33(10): 2596-2602, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28207276

RESUMO

Semen-derived enhancer of virus infection (SEVI) fibrils are naturally abundant amyloid aggregates found in semen that facilitate viral attachment and internalization of human immunodeficiency virus (HIV) in cells, thereby increasing the probability of infection. Mature SEVI fibrils are composed of aggregated peptides exhibiting high ß-sheet secondary structural characteristics. Herein, we show that polymers containing hydrophobic side chains can interact with SEVI and reduce its ß-sheet content by ∼45% compared with the ß-sheet content of SEVI in the presence of polymers with hydrophilic side chains, as estimated by polarization modulation-infrared reflectance absorption spectroscopy measurements. A nanoparticle (NP) formulation of this hydrophobic polymer reduced SEVI-mediated HIV infection in TMZ-bl cells by 60% compared with the control treatment. Although these NPs lacked specific amyloid-targeting groups, thus requiring high concentrations to observe biological activity, the use of hydrophobic interactions to alter the secondary structure of amyloids represents a useful approach to neutralizing the SEVI function. These results could, therefore, have general implications in the design of novel materials that can modify the activity of amyloids associated with a variety of other neurological and systemic diseases.


Assuntos
Nanopartículas , Amiloide , Infecções por HIV , Conformação Proteica em Folha beta , Sêmen
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA