Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Phys Biol ; 17(6): 065004, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-33035200

RESUMO

A central question in eukaryotic cell biology asks, during cell division, how is the growth and distribution of organelles regulated to ensure each daughter cell receives an appropriate amount. For vacuoles in budding yeast, there are well described organelle-to-cell size scaling trends as well as inheritance mechanisms involving highly coordinated movements. It is unclear whether such mechanisms are necessary in the symmetrically dividing fission yeast, Schizosaccharomyces pombe, in which random partitioning may be utilized to distribute vacuoles to daughter cells. To address the increasing need for high-throughput analysis, we are augmenting existing semi-automated image processing by developing fully automated machine learning methods for locating vacuoles and segmenting fission yeast cells from brightfield and fluorescence micrographs. All strains studied show qualitative correlations in vacuole-to-cell size scaling trends, i.e. vacuole volume, surface area, and number all increase with cell size. Furthermore, increasing vacuole number was found to be a consistent mechanism for the increase in total vacuole size in the cell. Vacuoles are not distributed evenly throughout the cell with respect to available cytoplasm. Rather, vacuoles show distinct peaks in distribution close to the nucleus, and this preferential localization was confirmed in mutants in which nucleus position is perturbed. Disruption of microtubules leads to quantitative changes in both vacuole size scaling trends and distribution patterns, indicating the microtubule cytoskeleton is a key mechanism for maintaining vacuole structure.


Assuntos
Schizosaccharomyces/citologia , Vacúolos/metabolismo
2.
Proc Natl Acad Sci U S A ; 106(4): 979-84, 2009 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-19164559

RESUMO

Synthetic lipid-oligonucleotide conjugates inserted into lipid vesicles mediate fusion when one population of vesicles displays the 5'-coupled conjugate and the other the 3'-coupled conjugate, so that anti-parallel hybridization allows the membrane surfaces to come into close proximity. Improved assays show that lipid mixing proceeds more quickly and to a much greater extent than content mixing, suggesting the latter is rate limiting. To test the effect of membrane-membrane spacing on fusion, a series of conjugates was constructed by adding 2-24 noncomplementary bases at the membrane-proximal ends of two complementary sequences. Increasing linker lengths generally resulted in progressively reduced rates and extents of lipid and content mixing, in contrast to higher vesicle docking rates. The relatively flexible, single-stranded DNA linker facilitates docking but allows greater spacing between the vesicles after docking, thus making the transition into fusion less probable, but not preventing it altogether. These experiments demonstrate the utility of DNA as a model system for fusion proteins, where sequence can easily be modified to systematically probe the effect of distance between bilayers in the fusion reaction.


Assuntos
DNA/metabolismo , Lipídeos/química , Fusão de Membrana , Oligonucleotídeos/metabolismo , Sequência de Bases , DNA/genética , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Oligonucleotídeos/genética , Compostos Organofosforados , Proteínas SNARE/metabolismo
3.
Proc Natl Acad Sci U S A ; 104(48): 18913-8, 2007 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18025472

RESUMO

Membrane-membrane recognition and binding are crucial in many biological processes. We report an approach to studying the dynamics of such reactions by using DNA-tethered vesicles as a general scaffold for displaying membrane components. This system was used to characterize the docking reaction between two populations of tethered vesicles that display complementary DNA. Deposition of vesicles onto a supported lipid bilayer was performed by using a microfluidic device to prevent mixing of the vesicles in bulk during sample preparation. Once tethered onto the surface, vesicles mixed via two-dimensional diffusion. DNA-mediated docking of two reacting vesicles results in their colocalization after collision and their subsequent tandem motion. Individual docking events and population kinetics were observed via epifluorescence microscopy. A lattice-diffusion simulation was implemented to extract from experimental data the probability, P(dock), that a collision leads to docking. For individual vesicles displaying small numbers of docking DNA, P(dock) shows a first-order relationship with copy number as well as a strong dependence on the DNA sequence. Both trends are explained by a model that includes both tethered vesicle diffusion on the supported bilayer and docking DNA diffusion over each vesicle's surface. These results provide the basis for the application of tethered vesicles to study other membrane reactions including protein-mediated docking and fusion.


Assuntos
DNA Complementar/metabolismo , Bicamadas Lipídicas/química , Oligodesoxirribonucleotídeos/metabolismo , DNA Complementar/química , Difusão , Cinética , Técnicas Analíticas Microfluídicas , Microscopia de Fluorescência , Modelos Químicos , Movimento (Física) , Hibridização de Ácido Nucleico , Oligodesoxirribonucleotídeos/química
4.
J Struct Biol ; 168(1): 190-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19560541

RESUMO

We have developed a strategy for preparing tethered lipid bilayer membrane patches on solid surfaces by DNA hybridization. In this way, the tethered membrane patch is held at a controllable distance from the surface by varying the length of the DNA used. Two basic strategies are described. In the first, single-stranded DNA strands are immobilized by click chemistry to a silica surface, whose remaining surface is passivated to prevent direct assembly of a solid supported bilayer. Then giant unilamellar vesicles (GUVs) displaying the antisense strand, using a DNA-lipid conjugate developed in earlier work [Chan, Y.-H.M., van Lengerich, B., et al., 2008. Lipid-anchored DNA mediates vesicle fusion as observed by lipid and content mixing. Biointerphases 3 (2), FA17-FA21], are allowed to tether, spread and rupture to form tethered bilayer patches. In the second, a supported lipid bilayer displaying DNA using the DNA-lipid conjugate is first assembled on the surface. Then GUVs displaying the antisense strand are allowed to tether, spread and rupture to form tethered bilayer patches. The essential difference between these methods is that the tethering hybrid DNA is immobile in the first, while it is mobile in the second. Both strategies are successful; however, with mobile DNA hybrids as tethers, the patches are unstable, while in the first strategy stable patches can be formed. In the case of mobile tethers, if different length DNA hybrids are present, lateral segregation by length occurs and can be visualized by fluorescence interference contrast microscopy making this an interesting model for interactions that occur in cell junctions. In both cases, lipid mobility is high and there is a negligible immobile fraction. Thus, these architectures offer a flexible platform for the assembly of lipid bilayers at a well-defined distance from a solid support.


Assuntos
DNA/química , Bicamadas Lipídicas/química , Membranas Artificiais , DNA de Cadeia Simples/química , Recuperação de Fluorescência Após Fotodegradação , Microscopia Confocal , Modelos Teóricos
5.
CBE Life Sci Educ ; 18(3): ar47, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31469624

RESUMO

Instructor Talk-noncontent language used by instructors in classrooms-is a recently defined and promising variable for better understanding classroom dynamics. Having previously characterized the Instructor Talk framework within the context of a single course, we present here our results surrounding the applicability of the Instructor Talk framework to noncontent language used by instructors in novel course contexts. We analyzed Instructor Talk in eight additional biology courses in their entirety and in 61 biology courses using an emergent sampling strategy. We observed widespread use of Instructor Talk with variation in the amount and category type used. The vast majority of Instructor Talk could be characterized using the originally published Instructor Talk framework, suggesting the robustness of this framework. Additionally, a new form of Instructor Talk-Negatively Phrased Instructor Talk, language that may discourage students or distract from the learning process-was detected in these novel course contexts. Finally, the emergent sampling strategy described here may allow investigation of Instructor Talk in even larger numbers of courses across institutions and disciplines. Given its widespread use, potential influence on students in learning environments, and ability to be sampled, Instructor Talk may be a key variable to consider in future research on teaching and learning in higher education.


Assuntos
Biologia/educação , Docentes , Ensino , Currículo , Coleta de Dados , Humanos , Aprendizagem , Estudantes
6.
Curr Opin Chem Biol ; 11(6): 581-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17976391

RESUMO

The complexity of biological membranes has motivated the development of a wide variety of simpler model systems whose size, geometry, and composition can be tailored with great precision. Approaches highlighted in this review are illustrated in Figure 1 including vesicles, supported bilayers, and hybrid membrane systems. These have been used to study problems ranging from phase behavior to membrane fusion. Experimental membrane models continue to advance in complexity with respect to architecture, size, and composition, as do computer simulations of their properties and dynamics. Analytical techniques such as imaging secondary ion mass spectrometry have also been developed and refined to give increasing spatial resolution and information content on membrane composition and dynamics.


Assuntos
Bicamadas Lipídicas , Membranas Artificiais , Lipossomas Unilamelares , Simulação por Computador , Modelos Biológicos
7.
CBE Life Sci Educ ; 17(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29326102

RESUMO

Many efforts to improve science teaching in higher education focus on a few faculty members at an institution at a time, with limited published evidence on attempts to engage faculty across entire departments. We created a long-term, department-wide collaborative professional development program, Biology Faculty Explorations in Scientific Teaching (Biology FEST). Across 3 years of Biology FEST, 89% of the department's faculty completed a weeklong scientific teaching institute, and 83% of eligible instructors participated in additional semester-long follow-up programs. A semester after institute completion, the majority of Biology FEST alumni reported adding active learning to their courses. These instructor self-reports were corroborated by audio analysis of classroom noise and surveys of students in biology courses on the frequency of active-learning techniques used in classes taught by Biology FEST alumni and nonalumni. Three years after Biology FEST launched, faculty participants overwhelmingly reported that their teaching was positively affected. Unexpectedly, most respondents also believed that they had improved relationships with departmental colleagues and felt a greater sense of belonging to the department. Overall, our results indicate that biology department-wide collaborative efforts to develop scientific teaching skills can indeed attract large numbers of faculty, spark widespread change in teaching practices, and improve departmental relations.


Assuntos
Biologia/educação , Desenvolvimento de Programas , Ensino , Docentes , Objetivos , Humanos , Motivação , Aprendizagem Baseada em Problemas , Estudantes , Inquéritos e Questionários
8.
Curr Biol ; 26(9): 1221-8, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27151661

RESUMO

It has long been noted that larger animals have larger organs compared to smaller animals of the same species, a phenomenon termed scaling [1]. Julian Huxley proposed an appealingly simple model of "relative growth"-in which an organ and the whole body grow with their own intrinsic rates [2]-that was invoked to explain scaling in organs from fiddler crab claws to human brains. Because organ size is regulated by complex, unpredictable pathways [3], it remains unclear whether scaling requires feedback mechanisms to regulate organ growth in response to organ or body size. The molecular pathways governing organelle biogenesis are simpler than organogenesis, and therefore organelle size scaling in the cell provides a more tractable case for testing Huxley's model. We ask the question: is it possible for organelle size scaling to arise if organelle growth is independent of organelle or cell size? Using the yeast vacuole as a model, we tested whether mutants defective in vacuole inheritance, vac8Δ and vac17Δ, tune vacuole biogenesis in response to perturbations in vacuole size. In vac8Δ/vac17Δ, vacuole scaling increases with the replicative age of the cell. Furthermore, vac8Δ/vac17Δ cells continued generating vacuole at roughly constant rates even when they had significantly larger vacuoles compared to wild-type. With support from computational modeling, these results suggest there is no feedback between vacuole biogenesis rates and vacuole or cell size. Rather, size scaling is determined by the relative growth rates of the vacuole and the cell, thus representing a cellular version of Huxley's model.


Assuntos
Organelas/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Vacúolos/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Science ; 337(6099): 1186-9, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22955827

RESUMO

Cells have developed ways to sense and control the size of their organelles. Size-sensing mechanisms range from direct measurements provided by dedicated reporters to indirect functional readouts, and they are used to modify organelle size under both normal and stress conditions. Organelle size can also be controlled in the absence of an identifiable size sensor. Studies on flagella have dissected principles of size sensing and control, and it will be exciting to see how these principles apply to other organelles.


Assuntos
Fenômenos Fisiológicos Celulares , Tamanho das Organelas , Organelas , Animais , Transporte Biológico , Flagelos/metabolismo , Flagelos/fisiologia , Flagelos/ultraestrutura , Humanos , Modelos Biológicos , Organelas/química , Organelas/metabolismo , Organelas/ultraestrutura
10.
Science ; 338(6108): 822-4, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23139336

RESUMO

Mitochondria must grow with the growing cell to ensure proper cellular physiology and inheritance upon division. We measured the physical size of mitochondrial networks in budding yeast and found that mitochondrial network size increased with increasing cell size and that this scaling relation occurred primarily in the bud. The mitochondria-to-cell size ratio continually decreased in aging mothers over successive generations. However, regardless of the mother's age or mitochondrial content, all buds attained the same average ratio. Thus, yeast populations achieve a stable scaling relation between mitochondrial content and cell size despite asymmetry in inheritance.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Tamanho Mitocondrial , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/ultraestrutura , Fase G1 , Microscopia Confocal , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
11.
Organogenesis ; 6(2): 88-96, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20885855

RESUMO

How size is controlled is a fundamental question in biology. In this review, we discuss the use of scaling relationships-for example, power-laws of the form y∝x(α)-to provide a framework for comparison and interpretation of size measurements. Such analysis can illustrate the biological and physical principles underlying observed trends, as has been proposed for the allometric dependence of metabolic rate or limb structure on organism mass. Techniques for measuring size at smaller length-scales continue to improve, leading to more data on the control of size in cells and organelles. Size scaling of these structures is expected to influence growth patterns, functional capacity and intracellular transport. Furthermore, organelles such as the nucleus, mitochondria and endoplasmic reticulum show widely varying morphologies that affect their scaling properties. We provide brief summaries of these issues for individual organelles, and conclude with a discussion on how to apply this concept to better understand the mechanisms of size control in the cellular environment.


Assuntos
Tamanho Celular , Tamanho das Organelas , Animais , Biologia Celular , Humanos
12.
Biointerphases ; 3(2): FA17, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20408664

RESUMO

A general method for synthesizing 5(')- and 3(')-coupled DNA-lipid conjugates has been developed and employed in DNA-mediated vesicle fusion. Vesicles presenting complementary DNA fuse, resulting in both outer and inner leaflet mixing as well as content mixing. Fusion is maximized using 5(')- and 3(')-coupled DNA on opposite vesicle partners, rather than only 5(')-coupled DNA, showing the importance of DNA orientation to the process. Lipid and content mixing assays show a dependence of fusion kinetics on the sequence and average number of DNA per vesicle. Vesicles without DNA or presenting noncomplementary sequences also appear to undergo some degree of lipid mixing or exchange, but no content mixing. Total lipid mixing appears to occur more efficiently than inner leaflet mixing and content mixing, and this may be explained by the observed nonspecific lipid mixing and/or the rise of a hemifused intermediate. The ability to control DNA sequence and the relative experimental simplicity of this system make it highly attractive to probe fundamental questions of membrane fusion using both ensemble and single vesicle assays.

13.
Langmuir ; 22(13): 5682-9, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16768494

RESUMO

We recently introduced a method to tether intact phospholipid vesicles onto a fluid supported lipid bilayer using DNA hybridization (Yoshina-Ishii, C.; Miller, G. P.; Kraft, M. L; Kool, E. T.; Boxer, S. G. J. Am. Chem. Soc. 2005, 127, 1356-1357). Once tethered, the vesicles can diffuse in two dimensions parallel to the supported membrane surface. The average diffusion coefficient, D, is typically 0.2 microm(2)/s; this is 3-5 times smaller than for individual lipid or DNA-lipid conjugate diffusion in supported bilayers. In this article, we investigate the origin of this difference in the diffusive dynamics of tethered vesicles by single-particle tracking under collision-free conditions. D is insensitive to tethered vesicle size from 30 to 200 nm, as well as a 3-fold change in the viscosity of the bulk medium. The addition of macromolecules such as poly(ethylene glycol) reversibly stops the motion of tethered vesicles without causing the exchange of lipids between the tethered vesicle and supported bilayer. This is explained as a depletion effect at the interface between tethered vesicles and the supported bilayer. Ca ions lead to transient vesicle-vesicle interactions when tethered vesicles contain negatively charged lipids, and vesicle diffusion is greatly reduced upon Ca ion addition when negatively charged lipids are present both in the supported bilayer and tethered vesicles. Both effects are interesting in their own right, and they also suggest that tethered vesicle-supported bilayer interactions are possible; this may be the origin of the reduction in D for tethered vesicles. In addition, the effects of surface defects that reversibly trap diffusing vesicles are modeled by Monte Carlo simulations. This shows that a significant reduction in D can be observed while maintaining normal diffusion behavior on the time scale of our experiments.


Assuntos
Bicamadas Lipídicas/química , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/química , Fenômenos Biofísicos , Biofísica , Cálcio/química , Materiais Revestidos Biocompatíveis/química , DNA/química , Difusão , Recuperação de Fluorescência Após Fotodegradação , Substâncias Macromoleculares/química , Modelos Químicos , Hibridização de Ácido Nucleico , Fosfatidilcolinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA