Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hum Mol Genet ; 31(16): 2766-2778, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35348676

RESUMO

We previously molecularly and clinically characterized Mazzanti syndrome, a RASopathy related to Noonan syndrome that is mostly caused by a single recurrent missense variant (c.4A > G, p.Ser2Gly) in SHOC2, which encodes a leucine-rich repeat-containing protein facilitating signal flow through the RAS-mitogen-associated protein kinase (MAPK) pathway. We also documented that the pathogenic p.Ser2Gly substitution causes upregulation of MAPK signaling and constitutive targeting of SHOC2 to the plasma membrane due to the introduction of an N-myristoylation recognition motif. The almost invariant occurrence of the pathogenic c.4A > G missense change in SHOC2 is mirrored by a relatively homogeneous clinical phenotype of Mazzanti syndrome. Here, we provide new data on the clinical spectrum and molecular diversity of this disorder and functionally characterize new pathogenic variants. The clinical phenotype of six unrelated individuals carrying novel disease-causing SHOC2 variants is delineated, and public and newly collected clinical data are utilized to profile the disorder. In silico, in vitro and in vivo characterization of the newly identified variants provides evidence that the consequences of these missense changes on SHOC2 functional behavior differ from what had been observed for the canonical p.Ser2Gly change but converge toward an enhanced activation of the RAS-MAPK pathway. Our findings expand the molecular spectrum of pathogenic SHOC2 variants, provide a more accurate picture of the phenotypic expression associated with variants in this gene and definitively establish a gain-of-function behavior as the mechanism of disease.


Assuntos
Anormalidades Múltiplas , Peptídeos e Proteínas de Sinalização Intracelular , Síndrome dos Cabelos Anágenos Frouxos , Anormalidades Múltiplas/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome dos Cabelos Anágenos Frouxos/genética , Fenótipo , Proteínas ras/genética , Proteínas ras/metabolismo
2.
Proteins ; 91(9): 1288-1297, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409524

RESUMO

Thanks to the considerable research which has been undertaken in the last few years to improve our understanding of the biology and mechanism of action of SARS-CoV-2, we know how the virus uses its surface spike protein to infect host cells. The transmembrane prosthesis, serine 2 (TMPRSS2) protein, located on the surface of human cells, recognizes the cleavage site in the spike protein, leading to the release of the fusion peptide and entry of the virus into the host cells. Because of its role, TMPRSS2 has been proposed as a drug target to prevent infection by the virus. In this study, we aim to increase our understanding of TMPRSS2 using long scale microsecond atomistic molecular dynamics simulations, focusing on the conformational changes over time. The comparison between simulations conducted on the protein in the native (apo) and inhibited form (holo), has shown that in the holo form the inhibitor stabilizes the catalytic site and induces rearrangements in the extracellular domain of the protein. In turn, it leads to the formation of a new cavity in the vicinity of the ligand binding pocket that is stable in the microsecond time scale. Given the low specificity of known protease inhibitors, these findings suggest a new potential drug target site that can be used to improve TMPRSS2 specific recognition by newly designed inhibitors.


Assuntos
COVID-19 , Humanos , Peptídeo Hidrolases/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligantes , Simulação de Dinâmica Molecular , Internalização do Vírus , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
3.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499049

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic that broke out in 2020 and continues to be the cause of massive global upheaval. Coronaviruses are positive-strand RNA viruses with a genome of ~30 kb. The genome is replicated and transcribed by RNA-dependent RNA polymerase together with accessory factors. One of the latter is the protein helicase (NSP13), which is essential for viral replication. The recently solved helicase structure revealed a tertiary structure composed of five domains. Here, we investigated NSP13 from a structural point of view, comparing its RNA-free form with the RNA-engaged form by using atomistic molecular dynamics (MD) simulations at the microsecond timescale. Structural analyses revealed conformational changes that provide insights into the contribution of the different domains, identifying the residues responsible for domain-domain interactions in both observed forms. The RNA-free system appears to be more flexible than the RNA-engaged form. This result underlies the stabilizing role of the nucleic acid and the functional core role of these domains.


Assuntos
RNA Helicases , SARS-CoV-2 , RNA Helicases/química , SARS-CoV-2/enzimologia , Proteínas não Estruturais Virais/química , RNA Viral/química
4.
J Chem Phys ; 153(12): 124110, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-33003701

RESUMO

The fruitful interplay of high-resolution spectroscopy and quantum chemistry has a long history, especially in the field of small, semi-rigid molecules. However, in recent years, the targets of spectroscopic studies are shifting toward flexible molecules, characterized by a large number of closely spaced energy minima, all contributing to the overall spectrum. Here, artificial intelligence comes into play since it is at the basis of powerful unsupervised techniques for the exploration of soft degrees of freedom. Integration of such algorithms with a two-stage QM/QM' (Quantum Mechanical) exploration/refinement strategy driven by a user-friendly graphical interface is the topic of the present paper. We will address in particular: (i) the performances of different semi-empirical methods for the exploration step and (ii) the comparison between stochastic and meta-heuristic algorithms in achieving a cheap yet complete exploration of the conformational space for medium sized chromophores. As test cases, we choose three amino acids of increasing complexity, whose full conformer enumeration has been reached only very recently. Next, we show that systems in condensed phases can be treated at the same level and with the same efficiency when employing a polarizable continuum description of the solvent. Finally, the challenging issue represented by the vibrational circular dichroism spectra of some rhodium complexes with flexible ligands has been addressed, showing that our fully unsupervised approach leads to remarkable agreement with the experiment.

5.
Hum Mutat ; 40(8): 1046-1056, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31059601

RESUMO

SHOC2 is a scaffold protein mediating RAS-promoted activation of mitogen-activated protein kinase (MAPK) signaling in response to extracellular stimuli. A recurrent activating mutation in SHOC2 (p.Ser2Gly) causes Mazzanti syndrome, a RASopathy characterized by features resembling Noonan syndrome and distinctive ectodermal abnormalities. A second mutation (p.Met173Ile) supposed to cause loss-of-function was more recently identified in two individuals with milder phenotypes. Here, we report on the third RASopathy-causing SHOC2 mutation (c.807_808delinsTT, p.Gln269_His270delinsHisTyr), which was found associated with prenatal-onset hypertrophic cardiomyopathy. Structural analyses indicated a possible impact of the mutation on the relative orientation of the two SHOC2's leucine-rich repeat domains. Functional studies provided evidence of its activating role, revealing enhanced binding of the mutant protein to MRAS and PPP1CB, and increased signaling through the MAPK cascade. Differing from SHOC2 S2G , SHOC2 Q269_H270delinsHY is not constitutively targeted to the plasma membrane. These data document that diverse mechanisms in SHOC2 functional dysregulation converge toward MAPK signaling upregulation.


Assuntos
Cardiomiopatia Hipertrófica/congênito , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Adulto , Animais , Células COS , Cardiomiopatia Hipertrófica/genética , Chlorocebus aethiops , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Sistema de Sinalização das MAP Quinases , Masculino , Modelos Moleculares , Gravidez , Diagnóstico Pré-Natal , Conformação Proteica , Domínios Proteicos , Proteína Fosfatase 1/metabolismo , Proteínas ras/metabolismo
6.
Am J Hum Genet ; 99(4): 962-973, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27666370

RESUMO

Microtubules are dynamic cytoskeletal elements coordinating and supporting a variety of neuronal processes, including cell division, migration, polarity, intracellular trafficking, and signal transduction. Mutations in genes encoding tubulins and microtubule-associated proteins are known to cause neurodevelopmental and neurodegenerative disorders. Growing evidence suggests that altered microtubule dynamics may also underlie or contribute to neurodevelopmental disorders and neurodegeneration. We report that biallelic mutations in TBCD, encoding one of the five co-chaperones required for assembly and disassembly of the αß-tubulin heterodimer, the structural unit of microtubules, cause a disease with neurodevelopmental and neurodegenerative features characterized by early-onset cortical atrophy, secondary hypomyelination, microcephaly, thin corpus callosum, developmental delay, intellectual disability, seizures, optic atrophy, and spastic quadriplegia. Molecular dynamics simulations predicted long-range and/or local structural perturbations associated with the disease-causing mutations. Biochemical analyses documented variably reduced levels of TBCD, indicating relative instability of mutant proteins, and defective ß-tubulin binding in a subset of the tested mutants. Reduced or defective TBCD function resulted in decreased soluble α/ß-tubulin levels and accelerated microtubule polymerization in fibroblasts from affected subjects, demonstrating an overall shift toward a more rapidly growing and stable microtubule population. These cells displayed an aberrant mitotic spindle with disorganized, tangle-shaped microtubules and reduced aster formation, which however did not alter appreciably the rate of cell proliferation. Our findings establish that defective TBCD function underlies a recognizable encephalopathy and drives accelerated microtubule polymerization and enhanced microtubule stability, underscoring an additional cause of altered microtubule dynamics with impact on neuronal function and survival in the developing brain.


Assuntos
Alelos , Encefalopatias/genética , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Mutação , Dobramento de Proteína , Tubulina (Proteína)/metabolismo , Adolescente , Idade de Início , Encéfalo/metabolismo , Encéfalo/patologia , Encefalopatias/patologia , Proliferação de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Lactente , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/patologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Fuso Acromático/metabolismo , Fuso Acromático/patologia , Tubulina (Proteína)/química
7.
Phys Chem Chem Phys ; 21(36): 19921-19934, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475256

RESUMO

The search for stationary points in the molecular potential energy surfaces (PES) is a problem of increasing relevance in different fields of molecular sciences especially for large, flexible systems characterized by several large-amplitude internal motions leading to shallow minima with comparable energies and separated by small barriers. After structural biology and medicinal chemistry, also high-resolution molecular spectroscopy, which is the focus of our research activity, is nowadays shifting its attention to this kind of molecular systems. In such circumstances, accurate geometrical structures and relative stabilities of all these minima are a mandatory prerequisite for the vis-à-vis comparison between computed and experimental spectra. This task raises, in turn, the problem of the best compromise between accuracy and feasibility. In our opinion, a promising route is offered by a two-level stochastic search in which a relatively inexpensive MM or QM method is used in the initial search, followed by single point energy evaluation at a higher QM level of a relatively large number of low-energy structures in order to select a final short-list of candidates, whose geometries are fully optimized at the higher QM level. Finally, the relative stabilities and properties of the final short-list of energy minima can be computed by a state-of-the-art QM approach. This strategy defines a general two-level search/three-level evaluation approach, which can be finely tuned in terms of the accuracy of the sought results. Setup of the procedure, interface with a general purpose electronic structure code and validation of the most effective low-level methods for some representative molecular systems (three already well characterized and one new) ended up with a general, robust and user-friendly tool, which can be easily used and extended also by non-specialists to aid experimental spectroscopic studies.

8.
J Chem Phys ; 150(12): 124102, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30927869

RESUMO

In this paper, we have extended to the calculation of hyperfine coupling constants, the model recently proposed by some of the present authors [Giovannini et al., J. Chem. Theory Comput. 13, 4854-4870 (2017)] to include Pauli repulsion and dispersion effects in Quantum Mechanical/Molecular Mechanics (QM/MM) approaches. The peculiarity of the proposed approach stands in the fact that repulsion/dispersion contributions are explicitly introduced in the QM Hamiltonian. Therefore, such terms not only enter the evaluation of energetic properties but also propagate to molecular properties and spectra. A novel parametrization of the electrostatic fluctuating charge force field has been developed, thus allowing a quantitative reproduction of reference QM interaction energies. Such a parametrization has been then tested against the prediction of EPR parameters of prototypical nitroxide radicals in aqueous solutions.

9.
Biopolymers ; 109(10): e23109, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29520768

RESUMO

Computational modeling involving Quantum Mechanics (QM) and Molecular Mechanics (MM) calculations are widely utilized to unveil the atomic-molecular properties that underpin their inherent characteristic features. The choice over the either of the QM and MM methods or a multiscale composite approach is driven by the target property of interest, and of course, the molecular size. Often, tailor-made schemes need to be devised to match the specific study purpose. Herein, we provide a perspective of these approaches addressing their effectiveness in terms of the delicate balance between the accuracy and computational feasibility. We focus on representative examples to highlight how different approaches can be fruitfully exploited for modeling the conformational landscape, and possibly, the spectroscopic behavior of biochemical molecules, especially amino acids building blocks.


Assuntos
Simulação de Dinâmica Molecular , Teoria Quântica , Ácidos Carboxílicos/química , Desenho de Fármacos , Bicamadas Lipídicas/química
10.
J Biol Chem ; 291(49): 25617-25628, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27756844

RESUMO

Ferritin molecular cages are marvelous 24-mer supramolecular architectures that enable massive iron storage (>2000 iron atoms) within their inner cavity. This cavity is connected to the outer environment by two channels at C3 and C4 symmetry axes of the assembly. Ferritins can also be exploited as carriers for in vivo imaging and therapeutic applications, owing to their capability to effectively protect synthetic non-endogenous agents within the cage cavity and deliver them to targeted tissue cells without stimulating adverse immune responses. Recently, X-ray crystal structures of Fe2+-loaded ferritins provided important information on the pathways followed by iron ions toward the ferritin cavity and the catalytic centers within the protein. However, the specific mechanisms enabling Fe2+ uptake through wild-type and mutant ferritin channels is largely unknown. To shed light on this question, we report extensive molecular dynamics simulations, site-directed mutagenesis, and kinetic measurements that characterize the transport properties and translocation mechanism of Fe2+ through the two ferritin channels, using the wild-type bullfrog Rana catesbeiana H' protein and some of its variants as case studies. We describe the structural features that determine Fe2+ translocation with atomistic detail, and we propose a putative mechanism for Fe2+ transport through the channel at the C3 symmetry axis, which is the only iron-permeable channel in vertebrate ferritins. Our findings have important implications for understanding how ion permeation occurs, and further how it may be controlled via purposely engineered channels for novel biomedical applications based on ferritin.


Assuntos
Proteínas de Anfíbios/química , Ferritinas/química , Ferro/química , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Cristalografia por Raios X , Ferritinas/genética , Ferritinas/metabolismo , Ferro/metabolismo , Domínios Proteicos , Rana catesbeiana
11.
Biochim Biophys Acta ; 1858(4): 689-97, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26744229

RESUMO

In recent years, engineered biological pores responsive to external stimuli have been fruitfully used for various biotechnological applications. Moreover, the strategy of tethering photo-switchable moieties into biomolecules has provided an unprecedented temporal control of purposely designed nanodevices, as demonstrated, for example, by the light-mediated regulation of the activity of enzymes and biochannels. Inspired by these advancements, we propose here a de novo designed nanodevice featuring the α-hemolysin (αHL) membrane channel purposely functionalized by an artificial "on/off" molecular switch. The switch, which is based on the photo-isomerization of the azobenzene moiety, introduces a smart nano-valve into the natural non-gated pore to confer tunable transport properties. We validated through molecular dynamics simulations and free energy calculations the effective inter-conversion of the engineered αHL pore between two configurations corresponding to an "open" and a "closed" form. The reported switchable translocation of a single-stranded DNA fragment under applied voltage supports the promising capabilities of this nanopore prototype in view of molecular sensing, detection and delivery applications at single-molecule level.


Assuntos
DNA de Cadeia Simples/química , Proteínas Hemolisinas/química , Engenharia de Proteínas , Técnicas Biossensoriais , DNA de Cadeia Simples/isolamento & purificação , Proteínas Hemolisinas/genética , Luz , Simulação de Dinâmica Molecular , Nanoporos , Porosidade
12.
Biochim Biophys Acta ; 1860(7): 1466-74, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27085704

RESUMO

BACKGROUND: The human lysine methyltransferase Smyd3, a member of the SET and MYND domain containing protein family, harbors methylation activity on both histone and non-histone targets in a tightly regulated manner. The mechanism of how Smyd3 dynamically regulates substrate recognition is still not fully unveiled. METHODS: Here, we employed molecular dynamics simulations on full length human Smyd3, performed to a total of 1.2 µ-second, in the presence (holo) and absence (apo) of the S-Adenosyl methionine (AdoMet) cofactor. The dynamical features of Smyd3 in apo and holo states have been examined and compared via examining geometrical and electrostatic properties. RESULTS: The results show a distinct dynamics of the C-terminal domain (CTD) in the two states. In the apo state, the CTD undergoes a large hinge like motion and samples more opened configurations, thus acting like a loosened clamp and resulting in expanded substrate binding crevice. In the holo state, the CTD exhibits a restricted motion while the overall structure remains compact, mimicking a closed clamp. This leads to a localized increase in the negative potential at the substrate binding cleft. Further, solvent accessibility of critical residues at the target lysine access channel, important for methylation activity, is increased. CONCLUSIONS: We postulate that AdoMet cofactor acts like a key and locks Smyd3 in a closed conformation. In effect, the cofactor binding restricts the elasticity of the CTD, presenting a compact substrate binding cleft with high negative potential, which may have implications on substrate recruitment via long range electrostatics. GENERAL SIGNIFICANCE: The deletion of the CTD from Smyd3 has been shown to abolish the basal histone methylation activity. Our study highlights the importance of the CTD elasticity in shaping the substrate binding site for recognition and supports the previously proposed role of the CTD in stabilizing the active site for methylation activity.


Assuntos
Coenzimas/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Simulação de Dinâmica Molecular , S-Adenosilmetionina/metabolismo , Sítios de Ligação , Domínio Catalítico , Coenzimas/química , Ativação Enzimática , Histona-Lisina N-Metiltransferase/química , Humanos , Cinética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , S-Adenosilmetionina/química , Relação Estrutura-Atividade , Especificidade por Substrato
14.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3154-3163, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27474202

RESUMO

BACKGROUND: The bacterial proteins IscS, IscU and CyaY, the bacterial orthologue of frataxin, play an essential role in the biological machine that assembles the prosthetic FeS cluster groups on proteins. They form functionally binary and ternary complexes both in vivo and in vitro. Yet, the mechanism by which they work remains unclear. METHODS: We carried out extensive molecular dynamics simulations to understand the nature of their interactions and the role of dynamics starting from the crystal structure of a IscS-IscU complex and the experimentally-based model of a ternary IscS-IscU-CyaY complex and used nuclear magnetic resonance to experimentally test the interface. RESULTS: We show that, while being firmly anchored to IscS, IscU has a pivotal motion around the interface. Our results also describe how the catalytic loop of IscS can flip conformation to allow FeS cluster assembly. This motion is hampered in the ternary complex explaining its inhibitory properties in cluster formation. CONCLUSIONS: We conclude that the observed 'fluid' IscS-IscU interface provides the binary complex with a functional adaptability exploited in partner recognition and unravels the molecular determinants of the reported inhibitory action of CyaY in the IscS-IscU-CyaY complex explained in terms of the hampering effect on specific IscU-IscS movements. GENERAL SIGNIFICANCE: Our study provides the first mechanistic basis to explain how the IscS-IscU complex selects its binding partners and supports the inhibitory role of CyaY in the ternary complex.


Assuntos
Liases de Carbono-Enxofre/química , Liases de Carbono-Enxofre/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Biocatálise , Espectroscopia de Ressonância Magnética , Estabilidade Proteica , Estrutura Secundária de Proteína , Eletricidade Estática
15.
Phys Chem Chem Phys ; 19(40): 27603-27610, 2017 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-28980686

RESUMO

It is widely accepted that endocytosis mediates the uptake of cationic cell penetrating peptides (CPPs) at relatively low concentrations (i.e. nano- to micromolar), while direct transduction across the plasma membrane comes into play at higher concentrations (i.e. micro- to millimolar). This latter process appears to depend on peptide-driven cellular processes, which in turn may induce local perturbations of plasma-membrane composition and/or integrity, and to be favored by peptide aggregation, especially into dimers. Besides, in most studies CPPs are tethered to fluorescent dyes in order to track peptide transduction events under the microscope, although often overlooking the possible role played by the dyes in assisting translocation. In an effort to provide some insights into the transduction process, here we report on a molecular dynamics (MD) simulation study of a prototype of the CPP family, namely the Tat11 arginine-rich motif. To be specific, the translocation of Tat11 across a purposely-created membrane pore, either or not covalently-linked to the tetramethylrhodamine-5-maleimide (TAMRA) dye and in both its monomeric and dimeric form, is analyzed in some detail. Results from several unconstrained and steered MD simulations, as well as energy decomposition analysis, nicely support the latest experimental evidence and help to shed light on key factors enabling peptide transduction. In particular, our study highlights the much slower translocation kinetics of Tat11 dimer in comparison to the single peptide, and therefore its enhanced capability to stabilize membrane pores. Notably, it also shows how TAMRA has overall negligible kinetic and energetic effects on peptide transduction, yet it promotes this process indirectly by favoring peptide aggregation.

16.
Phys Chem Chem Phys ; 19(45): 30590-30602, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29115317

RESUMO

Fluorescent molecular rotors (FMRs) belong to an important class of environment-sensitive dyes capable of acting as nanoprobes in the measurement of viscosity and polarity of their micro-environment. FMRs have found widespread applications in various research fields, ranging from analytical to biochemical sciences, for example in intracellular imaging studies or in volatile organic compound detection. Here, a computational investigation of a recently proposed FMR, namely 4-(diphenylamino)phthalonitrile (DPAP), in various chemical environments is presented. A purposely developed molecular mechanics force field is proposed and then applied to simulate the rotor in a high- and low-polar solvent (i.e., acetonitrile, tetrahydrofuran, o-xylene and cyclohexane), a polymer matrix and a lipid membrane. Subtle effects of the molecular interactions with the embedding medium, the structural fluctuations of the rotor and its rotational dynamics are analyzed in some detail. The results correlate with a previous work, thus supporting the reliability of the model, and provide further insights into the environment-specific properties of the dye. In particular, it is shown how molecular diffusion and rotational correlation times of the FMR are affected by the surrounding medium and how the molecular orientation of the dye becomes anisotropic once immersed in the lipid bilayer. Moreover, a qualitative correlation between the FMR rotational dynamics and the fluorescence lifetime is detected, a result in line with the observed viscosity dependence of its emission. Finally, optical absorption spectra are computed and successfully compared with their experimental counterparts.

17.
J Chem Inf Model ; 56(12): 2467-2475, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27959541

RESUMO

Smyd2, the SET and MYND domain containing protein lysine methyltransferase, targets histone and nonhistone substrates. Methylation of nonhistone substrates has direct implications in cancer development and progression. Dynamic regulation of Smyd2 activity and the structural basis of broad substrate specificity still remain elusive. Herein, we report on extensive molecular dynamics simulations on a full length Smyd2 in the presence and absence of AdoMet cofactor (covering together 1.3 µs of sampling), and the accompanying conformational transitions. Additionally, dynamics of the C-terminal domain (CTD) and structural features of substrate crevices of Smyd2 and Smyd3 are compared. The CTD of Smyd2 exhibits conformational flexibility in both states. In the holo form, however, it undergoes larger hinge motions resulting in more opened configurations than the apo form, which is confined around the partially open starting X-ray configuration. AdoMet binding triggers increased elasticity of the CTD leading Smyd2 to adopt fully opened configurations, which completely exposes the substrate binding crevice. These long-range concerted motions highlight Smyd2's ability to target substrates of varying sizes. Substrate crevices of Smyd2 and Smyd3 show distinct features in terms of spatial, hydration, and electrostatic properties that emphasize their characteristic modes of substrates interaction and entry pathways for inhibitor binding. On the whole, our study shows how the elasticity and hinge motion of the CTD regulate its functional role and underpin the basis of broad substrate specificity of Smyd2. We also highlight the specific structural principles that guide substrate and inhibitor binding to Smyd2 and Smyd3.


Assuntos
Histona-Lisina N-Metiltransferase/química , Sítios de Ligação , Cristalografia por Raios X , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos , Especificidade por Substrato
18.
Phys Chem Chem Phys ; 18(30): 20389-98, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27402118

RESUMO

Non-coded α-amino acids, originally exploited by nature, have been successfully reproduced by recent synthetic strategies to confer special structural and functional properties to small peptides. The most known and well-studied atypical residue is α-aminoisobutyric acid (Aib), which is contained in a fairly large number of peptides with known antibiotic effects. Here, we report on a molecular dynamics (MD) study of a series of homooligopeptides based on α-aminoisobutyric acid (Aib) with increasing length (Ac-(Aib)n-NMe, n = 5, 6, 7 and 10) and at various temperatures, employing a recent extension of the AMBER force field tailored for the Aib residue. Solvent effects have been analyzed by comparative MD simulations of a heptapeptide in water and dimethylsulfoxide at different temperatures. Our results show that the preference for the 310- and/or α-helix structures, which typically characterize Aib based peptides, is finely tuned by several factors including the chain length, temperature and solvent nature. While the transitions between intra-molecular i → i + 3 and i → i + 4 hydrogen bonds characterizing 310 and α-helices, respectively, are rather fast in small peptides (in the picosecond timescale), our analysis shows that the above physical and chemical factors modulate the relative equilibrium populations of the two helical structures. The obtained results nicely agree with available experimental data and support the use of the new force field for modeling Aib containing peptides.

19.
Proteins ; 83(8): 1513-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26052682

RESUMO

Plasmodium falciparum encounters frequent environmental challenges during its life cycle which makes productive protein folding immensely challenging for its metastable proteome. To identify the important components of protein folding machinery involved in maintaining P. falciparum proteome, we performed a proteome-wide phylogenetic profiling across various species. We found that except HSP110, the parasite lost all other cytosolic nucleotide exchange factors essential for regulating HSP70 which is the centrum of the protein folding network. Evolutionary and structural analysis shows that besides its canonical interaction with HSP70, PfHSP110 has acquired sequence insertions for additional dynamic interactions. Molecular co-evolution profile depicts that the co-evolving proteins of PfHSP110 belong to distinct pathways like genetic variation, DNA repair, fatty acid biosynthesis, protein modification/trafficking, molecular motions, and apoptosis. These proteins exhibit unique physiochemical properties like large size, high iso-electric point, low solubility, and antigenicity, hence require PfHSP110 chaperoning to attain functional state. Co-evolving protein interaction network suggests that PfHSP110 serves as an important hub to coordinate protein quality control, survival, and immune evasion pathways in the parasite. Overall, our findings highlight potential accessory roles of PfHSP110 that may provide survival advantage to the parasite during its lifecycle and febrile conditions. The data also open avenues for experimental validation of auxiliary functions of PfHSP110 and their exploration for design of better antimalarial strategies.


Assuntos
Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP110/metabolismo , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Análise por Conglomerados , Evolução Molecular , Proteínas de Choque Térmico HSP110/genética , Filogenia , Plasmodium falciparum/genética , Dobramento de Proteína , Estabilidade Proteica , Proteínas de Protozoários/genética
20.
J Phys Chem A ; 119(21): 5465-75, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25752804

RESUMO

Water solvation has a central role in several biochemical processes ranging from protein folding to biomolecular recognition and enzyme catalysis. Because of its importance, the structure and dynamics of hydration layers around biological macromolecules have been the targets of a great number of experimental and computational studies. In the present contribution, we have investigated the effects of periodic boundary conditions (PBCs), as used in conjunction with molecular dynamics (MD) simulations, on the dynamic and electric properties of water layers. In particular, we have systematically performed MD simulations of neat water and biomolecules in aqueous solutions by imposing a different external dielectric constant, a generally overlooked parameter in PBC simulations. The effect of the system size has also been addressed. Overall, our results consistently indicate that the dipole moment properties of water layers, and specifically the dipole moment fluctuations and the reorientational correlation functions, can be sensitive to the choice of the external boundary conditions, whereas other molecular properties, such as the self-diffusion coefficient and the reorientational relaxation times, are not affected. We think that our investigation may help to assess appropriate simulation conditions for modeling the aqueous environment of relevant biochemical systems and processes.


Assuntos
Solventes/química , Água/química , Alanina/química , Cobre/química , Difusão , Simulação de Dinâmica Molecular , Peptídeos/química , Plastocianina/química , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA