RESUMO
Although characterization of T cell exhaustion has unlocked powerful immunotherapies, the mechanisms sustaining adaptations of short-lived innate cells to chronic inflammatory settings remain unknown. During murine chronic viral infection, we found that concerted events in bone marrow and spleen mediated by type I interferon (IFN-I) and Toll-like receptor 7 (TLR7) maintained a pool of functionally exhausted plasmacytoid dendritic cells (pDCs). In the bone marrow, IFN-I compromised the number and the developmental capacity of pDC progenitors, which generated dysfunctional pDCs. Concurrently, exhausted pDCs in the periphery were maintained by self-renewal via IFN-I- and TLR7-induced proliferation of CD4- subsets. On the other hand, pDC functional loss was mediated by TLR7, leading to compromised IFN-I production and resistance to secondary infection. These findings unveil the mechanisms sustaining a self-perpetuating pool of functionally exhausted pDCs and provide a framework for deciphering long-term exhaustion of other short-lived innate cells during chronic inflammation.
Assuntos
Autorrenovação Celular/imunologia , Células Dendríticas/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Glicoproteínas de Membrana/imunologia , Receptor 7 Toll-Like/imunologia , Células 3T3 , Animais , Proteínas de Transporte/biossíntese , Linhagem Celular , Proliferação de Células , Proteínas de Ligação a DNA/biossíntese , Células Dendríticas/citologia , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/biossíntese , Proteínas Repressoras , Transdução de Sinais/imunologia , Fator de Transcrição 4/biossíntese , Fatores de Transcrição/biossínteseRESUMO
ABSTRACT: Chimeric antigen receptor T-cell (CAR T) therapy has produced remarkable clinical responses in B-cell neoplasms. However, many challenges limit this class of agents for the treatment of other cancer types, in particular the lack of tumor-selective antigens for solid tumors and other hematological malignancies, such as acute myeloid leukemia (AML), which may be addressed without significant risk of severe toxicities while providing sufficient abundance for efficient tumor suppression. One approach to overcome this hurdle is dual targeting by an antibody-T-cell receptor (AbTCR) and a chimeric costimulatory signaling receptor (CSR) to 2 different antigens, in which both antigens are found together on the cancer cells but not together on normal cells. To explore this proof of concept in AML, we engineered a new T-cell format targeting Wilms tumor 1 protein (WT1) and CD33; both are highly expressed on most AML cells. Using an AbTCR comprising a newly developed TCR-mimic monoclonal antibody against the WT1 RMFPNAPYL (RMF) epitope/HLA-A2 complex, ESK2, and a secondary CSR comprising a single-chain variable fragment directed to CD33 linked to a truncated CD28 costimulatory fragment, this unique platform confers specific T-cell cytotoxicity to the AML cells while sparing healthy hematopoietic cells, including CD33+ myelomonocytic normal cells. These data suggest that this new platform, named AbTCR-CSR, through the combination of a AbTCR CAR and CSR could be an effective strategy to reduce toxicity and improve specificity and clinical outcomes in adoptive T-cell therapy in AML.
Assuntos
Leucemia Mieloide Aguda , Anticorpos de Cadeia Única , Humanos , Linfócitos T , Receptores de Antígenos de Linfócitos T , Leucemia Mieloide Aguda/patologia , Imunoterapia AdotivaRESUMO
Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.
Assuntos
Antineoplásicos/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/terapia , Neoplasias Experimentais , Pró-Fármacos , Receptores de Antígenos Quiméricos , Linfócitos T , Microambiente Tumoral , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Nucleic acid-sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective antitumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid-inducible gene I (RIG-I) and downstream interferon regulatory factor 3. We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA-sensing pathways.
Assuntos
Proteína DEAD-box 58/metabolismo , Interferon Tipo I/metabolismo , Fosfoproteínas/metabolismo , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/metabolismo , Receptores Imunológicos/metabolismo , Spliceossomos/metabolismo , Células A549 , Substituição de Aminoácidos , Animais , Proteína DEAD-box 58/genética , Humanos , Interferon Tipo I/genética , Camundongos , Mutação de Sentido Incorreto , Fosfoproteínas/genética , Precursores de RNA/genética , Fatores de Processamento de RNA/genética , Receptores Imunológicos/genética , Spliceossomos/genética , Células THP-1RESUMO
The clinical use of interleukin-2 (IL-2) for cancer immunotherapy is limited by severe toxicity. Emerging IL-2 therapies with reduced IL-2 receptor alpha (IL-2Rα) binding aim to mitigate toxicity and regulatory T cell (Treg) expansion but have had limited clinical success. Here, we show that IL-2Rα engagement is critical for the anti-tumor activity of systemic IL-2 therapy. A "non-α" IL-2 mutein induces systemic expansion of CD8+ T cells and natural killer (NK) cells over Tregs but exhibits limited anti-tumor efficacy. We develop a programmed cell death protein 1 (PD-1)-targeted, receptor-masked IL-2 immunocytokine, PD1-IL2Ra-IL2, which attenuates systemic IL-2 activity while maintaining the capacity to engage IL-2Rα on PD-1+ T cells. Mice treated with PD1-IL2Ra-IL2 show no systemic toxicities observed with unmasked IL-2 treatment yet achieve robust tumor growth control. Furthermore, PD1-IL2Ra-IL2 can be effectively combined with other T cell-mediated immunotherapies to enhance anti-tumor responses. These findings highlight the therapeutic potential of PD1-IL2Ra-IL2 as a targeted, receptor-masked, and "α-maintained" IL-2 therapy for cancer.
Assuntos
Subunidade alfa de Receptor de Interleucina-2 , Interleucina-2 , Receptor de Morte Celular Programada 1 , Interleucina-2/farmacologia , Interleucina-2/imunologia , Animais , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Camundongos , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Subunidade alfa de Receptor de Interleucina-2/imunologia , Linfócitos T Reguladores/imunologia , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Neoplasias/terapia , Feminino , Linfócitos T/imunologiaRESUMO
T-cell receptor (TCR)-based therapeutic cells and agents have emerged as a new class of effective cancer therapies. These therapies work on cells that express intracellular cancer-associated proteins by targeting peptides displayed on MHC receptors. However, cross-reactivities of these agents to off-target cells and tissues have resulted in serious, sometimes fatal, adverse events. We have developed a high-throughput genetic platform (termed "PresentER") that encodes MHC-I peptide minigenes for functional immunologic assays and determines the reactivities of TCR-like therapeutic agents against large libraries of MHC-I ligands. In this article, we demonstrated that PresentER could be used to identify the on-and-off targets of T cells and TCR-mimic (TCRm) antibodies using in vitro coculture assays or binding assays. We found dozens of MHC-I ligands that were cross-reactive with two TCRm antibodies and two native TCRs and that were not easily predictable by other methods.
Assuntos
Reações Cruzadas/imunologia , Ensaios de Triagem em Larga Escala/métodos , Antígenos de Histocompatibilidade Classe I/genética , Complexo Principal de Histocompatibilidade/imunologia , Neoplasias/imunologia , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologiaRESUMO
CREBBP mutations are highly recurrent in B-cell lymphomas and either inactivate its histone acetyltransferase (HAT) domain or truncate the protein. Herein, we show that these two classes of mutations yield different degrees of disruption of the epigenome, with HAT mutations being more severe and associated with inferior clinical outcome. Genes perturbed by CREBBP mutation are direct targets of the BCL6-HDAC3 onco-repressor complex. Accordingly, we show that HDAC3-selective inhibitors reverse CREBBP-mutant aberrant epigenetic programming, resulting in: (i) growth inhibition of lymphoma cells through induction of BCL6 target genes such as CDKN1A and (ii) restoration of immune surveillance due to induction of BCL6-repressed IFN pathway and antigen-presenting genes. By reactivating these genes, exposure to HDAC3 inhibitors restored the ability of tumor-infiltrating lymphocytes to kill DLBCL cells in an MHC class I and II-dependent manner, and synergized with PD-L1 blockade in a syngeneic model in vivo. Hence, HDAC3 inhibition represents a novel mechanism-based immune epigenetic therapy for CREBBP-mutant lymphomas. SIGNIFICANCE: We have leveraged the molecular characterization of different types of CREBBP mutations to define a rational approach for targeting these mutations through selective inhibition of HDAC3. This represents an attractive therapeutic avenue for targeting synthetic vulnerabilities in CREBBP-mutant cells in tandem with promoting antitumor immunity.This article is highlighted in the In This Issue feature, p. 327.
Assuntos
Proteína de Ligação a CREB/genética , Inibidor de Quinase Dependente de Ciclina p21/genética , Histona Desacetilases/genética , Linfoma/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Animais , Células Apresentadoras de Antígenos/efeitos dos fármacos , Células Apresentadoras de Antígenos/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Antígeno B7-H1/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epigenoma/genética , Epigenoma/imunologia , Genes MHC Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Histona Acetiltransferases/genética , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/efeitos dos fármacos , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Interferons/genética , Interferons/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfoma/tratamento farmacológico , Linfoma/imunologia , Linfoma/patologia , Camundongos , Mutação/genética , Transdução de Sinais/efeitos dos fármacosRESUMO
T-cell immunotherapies are often thwarted by the limited presentation of tumor-specific antigens abetted by the downregulation of human leukocyte antigen (HLA). We showed that drugs inhibiting ALK and RET produced dose-related increases in cell-surface HLA in tumor cells bearing these mutated kinases in vitro and in vivo, as well as elevated transcript and protein expression of HLA and other antigen-processing machinery. Subsequent analysis of HLA-presented peptides after ALK and RET inhibitor treatment identified large changes in the immunopeptidome with the appearance of hundreds of new antigens, including T-cell epitopes associated with impaired peptide processing (TEIPP) peptides. ALK inhibition additionally decreased PD-L1 levels by 75%. Therefore, these oncogenes may enhance cancer formation by allowing tumors to evade the immune system by downregulating HLA expression. Altogether, RET and ALK inhibitors could enhance T-cell-based immunotherapies by upregulating HLA, decreasing checkpoint blockade ligands, and revealing new, immunogenic, cancer-associated antigens.
Assuntos
Quinase do Linfoma Anaplásico/antagonistas & inibidores , Antígenos de Neoplasias/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Animais , Apresentação de Antígeno/efeitos dos fármacos , Linhagem Celular Tumoral , Crizotinibe/farmacologia , Feminino , Humanos , Camundongos Transgênicos , Neoplasias/imunologia , Peptídeos/imunologia , Pirimidinas/farmacologia , Sulfonas/farmacologiaRESUMO
Tumors often co-exist with T cells that recognize somatically mutated peptides presented by cancer cells on major histocompatibility complex I (MHC-I). However, it is unknown why the immune system fails to eliminate immune-recognizable neoplasms before they manifest as frank disease. To understand the determinants of MHC-I peptide immunogenicity in nascent tumors, we tested the ability of thousands of MHC-I ligands to cause tumor subclone rejection in immunocompetent mice by use of a new 'PresentER' antigen presentation platform. Surprisingly, we show that immunogenic tumor antigens do not lead to immune-mediated cell rejection when the fraction of cells bearing each antigen ('clonal fraction') is low. Moreover, the clonal fraction necessary to lead to rejection of immunogenic tumor subclones depends on the antigen. These data indicate that tumor neoantigen heterogeneity has an underappreciated impact on immune elimination of cancer cells and has implications for the design of immunotherapeutics such as cancer vaccines.
Assuntos
Células Clonais/patologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Neoplasias/imunologia , Sequência de Bases , Efeito Espectador , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Biblioteca Gênica , Imunocompetência , Complexo Principal de Histocompatibilidade/imunologia , Camundongos Endogâmicos C57BL , Peptídeos/imunologia , Receptores de Quinase C Ativada/imunologia , Linfócitos T/imunologia , VacinaçãoRESUMO
Preferentially expressed antigen in melanoma (PRAME) is a cancer-testis antigen that is expressed in many cancers and leukemias. In healthy tissue, PRAME expression is limited to the testes and ovaries, making it a highly attractive cancer target. PRAME is an intracellular protein that cannot currently be drugged. After proteasomal processing, the PRAME300-309 peptide ALYVDSLFFL (ALY) is presented in the context of human leukocyte antigen HLA-A*02:01 molecules for recognition by the T cell receptor (TCR) of cytotoxic T cells. Here, we have described Pr20, a TCR mimic (TCRm) human IgG1 antibody that recognizes the cell-surface ALY peptide/HLA-A2 complex. Pr20 is an immunological tool and potential therapeutic agent. Pr20 bound to PRAME+HLA-A2+ cancers. An afucosylated Fc form (Pr20M) directed antibody-dependent cellular cytotoxicity against PRAME+HLA-A2+ leukemia cells and was therapeutically effective against mouse xenograft models of human leukemia. In some tumors, Pr20 binding markedly increased upon IFN-γ treatment, mediated by induction of the immunoproteasome catalytic subunit ß5i. The immunoproteasome reduced internal destructive cleavages within the ALY epitope compared with the constitutive proteasome. The data provide rationale for developing TCRm antibodies as therapeutic agents for cancer, offer mechanistic insight on proteasomal regulation of tumor-associated peptide/HLA antigen complexes, and yield possible therapeutic solutions to target antigens with ultra-low surface presentation.
Assuntos
Antígenos de Neoplasias/imunologia , Antígeno HLA-A1/imunologia , Imunoglobulina G/farmacologia , Neoplasias Experimentais , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Imunoglobulina G/imunologia , Masculino , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Diffuse large B cell lymphoma (DLBCL) frequently harbors genetic alterations that activate the B cell receptor (BCR) and TLR pathways, which converge to activate NF-κB. While selective inhibition of BTK with ibrutinib causes clinical responses in relapsed DLBCL patients, most responses are partial and of a short duration. Here, we demonstrated that MyD88 silencing enhanced ibrutinib efficacy in DLBCL cells harboring MyD88 L265P mutations. Chemical downregulation of MyD88 expression with HDAC inhibitors also synergized with ibrutinib. We demonstrate that HDAC inhibitor regulation of MyD88 expression is mediated by STAT3. In turn, STAT3 silencing caused a decrease in MyD88 mRNA and protein levels, and enhanced the ibrutinib antilymphoma effect in MyD88 mutant DLBCL cells. Induced mutations in the STAT3 binding site in the MyD88 promotor region was associated with a decrease in MyD88 transcriptional activity. We also demonstrate that treatment with the HDAC inhibitor panobinostat decreased phosphorylated STAT3 binding to the MyD88 promotor. Accordingly, combined treatment with panobinostat and ibrutinib resulted in enhanced inhibition of NF-κB activity and caused regression of DLBCL xenografts. Our data provide a mechanistic rationale for combining HDAC inhibitors and ibrutinib for the treatment of DLBCL.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Mutação , Fator 88 de Diferenciação Mieloide/genética , Panobinostat/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adenina/análogos & derivados , Animais , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Camundongos , Piperidinas , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
INTRODUCTION: Monoclonal antibodies (mAbs) are potent cancer therapeutic agents, but exclusively recognize cell-surface targets whereas most cancer-associated proteins are found intracellularly. Hence, potential cancer therapy targets such as over expressed self-proteins, activated oncogenes, mutated tumor suppressors, and translocated gene products are not accessible to traditional mAb therapy. An emerging approach to target these epitopes is the use of TCR mimic mAbs (TCRm) that recognize epitopes similar to those of T cell receptors (TCR). AREAS COVERED: TCRm antigens are composed of a linear peptide sequence derived from degraded proteins and presented in the context of cell-surface MHC molecules. We discuss how the nature of the TCRm epitopes provides both advantages (absolute tumor specificity and access to a new universe of important targets) and disadvantages (low density, MHC restriction, MHC down-regulation, and cross-reactive linear epitopes) to conventional mAb therapy. We will also discuss potential solutions to these obstacles. EXPERT OPINION: TCRm combine the specificity of TCR recognition with the potency, pharmacologic properties, and versatility of mAbs. The structure and presentation of a TCRm epitope has important consequences related to the choice of targets, mAb design, available peptides and MHC subtype restrictions, possible cross-reactivity, and therapeutic activity.
Assuntos
Anticorpos Monoclonais/uso terapêutico , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Anticorpos Antineoplásicos/imunologia , Epitopos/imunologia , Humanos , Mimetismo MolecularRESUMO
The major hurdle to the creation of cancer-specific monoclonal antibodies (mAb) exhibiting limited cross-reactivity with healthy human cells is the paucity of known tumor-specific or mutated protein epitopes expressed on the cancer cell surface. Mutated and overexpressed oncoproteins are typically cytoplasmic or nuclear. Cells can present peptides from these distinguishing proteins on their cell surface in the context of human leukocyte antigen (HLA). T cell receptor mimic (TCRm) mAb can be discovered that react specifically to these complexes, allowing for selective targeting of cancer cells. The state-of-the-art for TCRm and the challenges and opportunities are discussed. Several such TCRm are moving toward clinical trials now.
RESUMO
The major histocompatibility complex I (MHC-1) presents antigenic peptides to tumor-specific CD8+ T cells. The regulation of MHC-I by kinases is largely unstudied, even though many patients with cancer are receiving therapeutic kinase inhibitors. Regulators of cell-surface HLA amounts were discovered using a pooled human kinome shRNA interference-based approach. Hits scoring highly were subsequently validated by additional RNAi and pharmacologic inhibitors. MAP2K1 (MEK), EGFR, and RET were validated as negative regulators of MHC-I expression and antigen presentation machinery in multiple cancer types, acting through an ERK output-dependent mechanism; the pathways responsible for increased MHC-I upon kinase inhibition were mapped. Activated MAPK signaling in mouse tumors in vivo suppressed components of MHC-I and the antigen presentation machinery. Pharmacologic inhibition of MAPK signaling also led to improved peptide/MHC target recognition and killing by T cells and TCR-mimic antibodies. Druggable kinases may thus serve as immediately applicable targets for modulating immunotherapy for many diseases. Cancer Immunol Res; 4(11); 936-47. ©2016 AACR.