Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 130(12): 1979-1989, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38643339

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a poor survival rate, largely due to the lack of early diagnosis. Although myeloid cells are crucial in the tumour microenvironment, whether their specific subset can be a biomarker of PDAC progression is unclear. METHODS: We analysed IL-22 receptor expression in PDAC and peripheral blood. Additionally, we analysed gene expression profiles of IL-10R2+/IL-22R1+ myeloid cells and the presence of these cells using single-cell RNA sequencing and murine orthotropic PDAC models, respectively, followed by examining the immunosuppressive function of IL-10R2+/IL-22R1+ myeloid cells. Finally, the correlation between IL-10R2 expression and PDAC progression was evaluated. RESULTS: IL-10R2+/IL-22R1+ myeloid cells were present in PDAC and peripheral blood. Blood IL-10R2+ myeloid cells displayed a gene expression signature associated with tumour-educated circulating monocytes. IL-10R2+/IL-22R1+ myeloid cells from human myeloid cell culture inhibited T cell proliferation. By mouse models for PDAC, we found a positive correlation between pancreatic tumour growth and increased blood IL-10R2+/IL-22R1+ myeloid cells. IL-10R2+/IL-22R1+ myeloid cells from an early phase of the PDAC model suppressed T cell proliferation and cytotoxicity. IL-10R2+ myeloid cells indicated tumour recurrence 130 days sooner than CA19-9 in post-pancreatectomy patients. CONCLUSIONS: IL-10R2+/IL-22R1+ myeloid cells in the peripheral blood might be an early marker of PDAC prognosis.


Assuntos
Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Subunidade beta de Receptor de Interleucina-10 , Células Mieloides , Recidiva Local de Neoplasia , Neoplasias Pancreáticas , Receptores de Interleucina , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/sangue , Humanos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/sangue , Camundongos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/sangue , Receptores de Interleucina/genética , Células Mieloides/metabolismo , Células Mieloides/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Subunidade beta de Receptor de Interleucina-10/genética , Feminino , Masculino , Microambiente Tumoral/genética , Linhagem Celular Tumoral
2.
BMC Med ; 22(1): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486246

RESUMO

BACKGROUND: Patients with fibro-calcific aortic valve disease (FCAVD) have lipid depositions in their aortic valve that engender a proinflammatory impetus toward fibrosis and calcification and ultimately valve leaflet stenosis. Although the lipoprotein(a)-autotaxin (ATX)-lysophosphatidic acid axis has been suggested as a potential therapeutic target to prevent the development of FCAVD, supportive evidence using ATX inhibitors is lacking. We here evaluated the therapeutic potency of an ATX inhibitor to attenuate valvular calcification in the FCAVD animal models. METHODS: ATX level and activity in healthy participants and patients with FCAVD were analyzed using a bioinformatics approach using the Gene Expression Omnibus datasets, enzyme-linked immunosorbent assay (ELISA), immunohistochemistry, and western blotting. To evaluate the efficacy of ATX inhibitor, interleukin-1 receptor antagonist-deficient (Il1rn-/-) mice and cholesterol-enriched diet-induced rabbits were used as the FCAVD models, and primary human valvular interstitial cells (VICs) from patients with calcification were employed. RESULTS: The global gene expression profiles of the aortic valve tissue of patients with severe FCAVD demonstrated that ATX gene expression was significantly upregulated and correlated with lipid retention (r = 0.96) or fibro-calcific remodeling-related genes (r = 0.77) in comparison to age-matched non-FCAVD controls. Orally available ATX inhibitor, BBT-877, markedly ameliorated the osteogenic differentiation and further mineralization of primary human VICs in vitro. Additionally, ATX inhibition significantly attenuated fibrosis-related factors' production, with a detectable reduction of osteogenesis-related factors, in human VICs. Mechanistically, ATX inhibitor prohibited fibrotic changes in human VICs via both canonical and non-canonical TGF-ß signaling, and subsequent induction of CTGF, a key factor in tissue fibrosis. In the in vivo FCAVD model system, ATX inhibitor exposure markedly reduced calcific lesion formation in interleukin-1 receptor antagonist-deficient mice (Il1rn-/-, P = 0.0210). This inhibition ameliorated the rate of change in the aortic valve area (P = 0.0287) and mean pressure gradient (P = 0.0249) in the FCAVD rabbit model. Moreover, transaortic maximal velocity (Vmax) was diminished with ATX inhibitor administration (mean Vmax = 1.082) compared to vehicle control (mean Vmax = 1.508, P = 0.0221). Importantly, ATX inhibitor administration suppressed the effects of a high-cholesterol diet and vitamin D2-driven fibrosis, in association with a reduction in macrophage infiltration and calcific deposition, in the aortic valves of this rabbit model. CONCLUSIONS: ATX inhibition attenuates the development of FCAVD while protecting against fibrosis and calcification in VICs, suggesting the potential of using ATX inhibitors to treat FCAVD.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica/patologia , Calcinose , Humanos , Animais , Camundongos , Coelhos , Estenose da Valva Aórtica/tratamento farmacológico , Osteogênese , Calcinose/tratamento farmacológico , Células Cultivadas , Fibrose , Colesterol , Receptores de Interleucina-1 , Lipídeos
3.
Cancer Immunol Immunother ; 72(8): 2757-2768, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37165046

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a devastating cancer due to its poor survival rate, early detection, and resectability. This study aimed to determine the peripheral blood mononuclear cell (PBMC) immune biomarkers in patients with PDAC and investigate the PDAC-specific peripheral blood biomarker panel and validate its clinical performance. METHODS: In this prospective, blinded, case-control study, a biomarker panel formula was generated using a development cohort-including healthy controls, patients at high risk of PDAC, and patients with benign pancreatic disease, PDAC, or other gastrointestinal malignancies-and its diagnostic performance was verified using a validation cohort, including patients with ≥ 1 lesion suspected as PDAC on computed tomography (CT). RESULTS: RNA-sequencing of PBMCs from patients with PDAC identified three novel immune cell markers, IL-7R, PLD4, and ID3, as specific markers for PDAC. Regarding the diagnostic performance of the regression formula for the three biomarker panels, the sensitivity, specificity, positive predictive value, negative predictive value, and accuracy were 84.0%, 78.8%, 47.2%, 95.6%, and 79.8%, respectively. Based on the formula scores for the biomarker panel, the false-negative rate (FNR) of the biomarkers was 8% (95% confidence interval [CI] 3.0-13.0), which was significantly lower than that based on CT in the validation cohort (29.2%, 95% CI 20.8-37.6). CONCLUSIONS: The regression formula constructed using three PBMC biomarkers is an inexpensive, rapid, and convenient method that shows clinically useful performance for the diagnosis of PDAC. It aids diagnoses and differential diagnoses of PDAC from pancreatic disease by lowering the FNR compared to CT. Clinical trial registration Clinical Research Information Service, KCT0004614 (08 January 2020).


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Leucócitos Mononucleares , Estudos de Casos e Controles , Estudos Prospectivos , Biomarcadores Tumorais/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , RNA Mensageiro , RNA , Neoplasias Pancreáticas
4.
Cell Commun Signal ; 21(1): 213, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596575

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) conducts a highly regulated inflammatory process by limiting the extent of inflammation to avoid toxicity and tissue damage, even in bone tissues. Thus, it is plausible that strategies for the maintenance of normal bone-immunity to prevent undesirable bone damage by TLR4 activation can exist, but direct evidence is still lacking. METHODS: Osteoclast precursors (OCPs) obtained from WT or Slit3-deficient mice were differentiated into osteoclast (OC) with macrophage colony-stimulating factor (M-CSF), RANK ligand (RANKL) and lipopolysaccharide (LPS) by determining the number of TRAP-positive multinuclear cells (TRAP+ MNCs). To determine the alteration of OCPs population, fluorescence-activated cell sorting (FACS) was conducted in bone marrow cells in mice after LPS injection. The severity of bone loss in LPS injected WT or Slit3-deficient mice was evaluated by micro-CT analysis. RESULT: We demonstrate that TLR4 activation by LPS inhibits OC commitment by inducing the concomitant expression of miR-218-2-3p and its host gene, Slit3, in mouse OCPs. TLR4 activation by LPS induced SLIT3 and its receptor ROBO1 in BMMs, and this SLIT3-ROBO1 axis hinders RANKL-induced OC differentiation by switching the protein levels of C/EBP-ß isoforms. A deficiency of SLIT3 resulted in increased RANKL-induced OC differentiation, and the elevated expression of OC marker genes including Pu.1, Nfatc1, and Ctsk. Notably, Slit3-deficient mice showed expanded OCP populations in the bone marrow. We also found that miR-218-2 was concomitantly induced with SLIT3 expression after LPS treatment, and that this miRNA directly suppressed Tnfrsf11a (RANK) expression at both gene and protein levels, linking it to a decrease in OC differentiation. An endogenous miR-218-2 block rescued the expression of RANK and subsequent OC formation in LPS-stimulated OCPs. Aligned with these results, SLIT3-deficient mice displayed increased OC formation and reduced bone density after LPS challenge. CONCLUSION: Our findings suggest that the TLR4-dependent concomitant induction of Slit3 and miR-218-2 targets RANK in OCPs to restrain OC commitment, thereby avoiding an uncoordinated loss of bone through inflammatory processes. These observations provide a mechanistic explanation for the role of TLR4 in controlling the commitment phase of OC differentiation. Video Abstract.


Assuntos
Osteoclastos , Receptor 4 Toll-Like , Animais , Camundongos , Proteína beta Intensificadora de Ligação a CCAAT , Lipopolissacarídeos/farmacologia , Macrófagos , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos/genética
5.
EMBO Rep ; 21(5): e48693, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32103600

RESUMO

The tumor suppressor Smad4, a key mediator of the TGF-ß/BMP pathways, is essential for development and tissue homeostasis. Phosphorylation of Smad4 in its linker region catalyzed by the mitogen-activated protein kinase (MAPK) plays a pivotal role in regulating its transcriptional activity and stability. In contrast, roles of Smad4 dephosphorylation as a control mechanism of TGF-ß/BMP signaling and the phosphatases responsible for its dephosphorylation remain so far elusive. Here, we identify Wip1 as a Smad4 phosphatase. Wip1 selectively binds and dephosphorylates Smad4 at Thr277, a key MAPK phosphorylation site, thereby regulating its nuclear accumulation and half-life. In Xenopus embryos, Wip1 limits mesoderm formation and favors neural induction by inhibiting TGF-ß/BMP signals. Wip1 restrains TGF-ß-induced growth arrest, migration, and invasion in human cells and enhances the tumorigenicity of cancer cells by repressing the antimitogenic activity of Smad4. We propose that Wip1-dependent dephosphorylation of Smad4 is critical for the regulation of TGF-ß signaling.


Assuntos
Proteína Fosfatase 2C/metabolismo , Transdução de Sinais , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta , Proteínas de Xenopus/metabolismo , Animais , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteína Fosfatase 2C/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/metabolismo
6.
FASEB J ; 34(12): 16276-16290, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078455

RESUMO

Clusterin (CLU) is a heterodimeric glycoprotein involved in a range of biological processes. We investigated the function of CLU as a novel regulator of adipogenesis. CLU expression increased during 3T3-L1 preadipocyte differentiation. CLU overexpression promoted adipogenic differentiation of preadipocytes and increased the mRNA levels of adipogenic markers including peroxisome proliferator-activated receptor γ (Pparg) and CCAAT enhancer-binding protein α (Cebpa). Conversely, knockdown of CLU attenuated adipogenesis and reduced transcript levels of Pparg and Cebpa. However, the promoter activities of both the Pparg and the Cebpa gene were not affected by alteration of CLU expression on its own. Additionally, the protein level of Krüppel-like factor 5 (KLF5), an upstream transcription factor of Pparg and Cebpa involved in adipogenic differentiation, was upregulated by CLU overexpression, although the mRNA level of Klf5 was not altered by changes in the expression level of CLU. Cycloheximide chase assay showed that the increased level of KLF5 by CLU overexpression was due to decreased degradation of KLF5 protein. Interestingly, CLU increased the stability of KLF5 by decreasing KLF5 ubiquitination. CLU inhibited the interaction between KLF5 and F-box/WD repeat-containing protein 7, which is an E3 ubiquitin ligase that targets KLF5. The adipogenic role of CLU was also addressed in mesenchymal stem cells (MSCs) and Clu-/- mouse embryonic fibroblasts (MEFs). Furthermore, CLU enhanced KLF5-mediated transcriptional activation of both the Cebpa and the Pparg promoter. Taken together, these results suggest that CLU is a novel regulator of adipocyte differentiation by modulating the protein stability of the adipogenic transcription factor KLF5.


Assuntos
Adipócitos/fisiologia , Diferenciação Celular/genética , Clusterina/genética , Fatores de Transcrição Kruppel-Like/genética , Células 3T3-L1 , Adipogenia/genética , Animais , Linhagem Celular , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitinação/genética
7.
Int J Mol Sci ; 22(9)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946862

RESUMO

Lumican, a ubiquitously expressed small leucine-rich proteoglycan, has been utilized in diverse biological functions. Recent experiments demonstrated that lumican stimulates preosteoblast viability and differentiation, leading to bone formation. To further understand the role of lumican in bone metabolism, we investigated its effects on osteoclast biology. Lumican inhibited both osteoclast differentiation and in vitro bone resorption in a dose-dependent manner. Consistent with this, lumican markedly decreased the expression of osteoclastogenesis markers. Moreover, the migration and fusion of preosteoclasts and the resorptive activity per osteoclast were significantly reduced in the presence of lumican, indicating that this protein affects most stages of osteoclastogenesis. Among RANKL-dependent pathways, lumican inhibited Akt but not MAP kinases such as JNK, p38, and ERK. Importantly, co-treatment with an Akt activator almost completely reversed the effect of lumican on osteoclast differentiation. Taken together, our findings revealed that lumican inhibits osteoclastogenesis by suppressing Akt activity. Thus, lumican plays an osteoprotective role by simultaneously increasing bone formation and decreasing bone resorption, suggesting that it represents a dual-action therapeutic target for osteoporosis.


Assuntos
Reabsorção Óssea/fisiopatologia , Lumicana/farmacologia , Osteoclastos/metabolismo , Osteogênese/fisiologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Fusão Celular , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Lumicana/fisiologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Osteogênese/efeitos dos fármacos , Osteoprotegerina/biossíntese , Ligante RANK/biossíntese , Ligante RANK/farmacologia , Proteínas Recombinantes/farmacologia
9.
Circulation ; 135(20): 1935-1950, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-28179397

RESUMO

BACKGROUND: Calcification of the aortic valve leads to increased leaflet stiffness and consequently to the development of calcific aortic valve disease. However, the underlying molecular and cellular mechanisms of calcification remain unclear. Here, we identified that dipeptidyl peptidase-4 (DPP-4, also known as CD26) increases valvular calcification and promotes calcific aortic valve disease progression. METHODS: We obtained the aortic valve tissues from humans and murine models (wild-type and endothelial nitric oxide synthase-deficient-mice) and cultured the valvular interstitial cells (VICs) and valvular endothelial cells from the cusps. We induced osteogenic differentiation in the primary cultured VICs and examined the effects of the DPP-4 inhibitor on the osteogenic changes in vitro and aortic valve calcification in endothelial nitric oxide synthase-deficient-mice. We also induced calcific aortic stenosis in male New Zealand rabbits (weight, 2.5-3.0 kg) by a cholesterol-enriched diet+vitamin D2 (25 000 IU, daily). Echocardiography was performed to assess the aortic valve area and the maximal and mean transaortic pressure gradients at baseline and 3-week intervals thereafter. After 12 weeks, we harvested the heart and evaluated the aortic valve tissue using immunohistochemistry. RESULTS: We found that nitric oxide depletion in human valvular endothelial cells activates NF-κB in human VICs. Consequently, the NF-κB promotes DPP-4 expression, which then induces the osteogenic differentiation of VICs by limiting autocrine insulin-like growth factor-1 signaling. The inhibition of DPP-4 enzymatic activity blocked the osteogenic changes in VICs in vitro and reduced the aortic valve calcification in vivo in a mouse model. Sitagliptin administration in a rabbit calcific aortic valve disease model led to significant improvements in the rate of change in aortic valve area, transaortic peak velocity, and maximal and mean pressure gradients over 12 weeks. Immunohistochemistry staining confirmed the therapeutic effect of Sitagliptin in terms of reducing the calcium deposits in the rabbit aortic valve cusps. In rabbits receiving Sitagliptin, the plasma insulin-like growth factor-1 levels were significantly increased, in line with DPP-4 inhibition. CONCLUSIONS: DPP-4-dependent insulin-like growth factor-1 inhibition in VICs contributes to aortic valve calcification, suggesting that DPP-4 could serve as a potential therapeutic target to inhibit calcific aortic valve disease progression.


Assuntos
Estenose da Valva Aórtica/metabolismo , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Calcinose/metabolismo , Dipeptidil Peptidase 4/biossíntese , Fator de Crescimento Insulin-Like I/metabolismo , Transdução de Sinais/fisiologia , Animais , Valva Aórtica/citologia , Estenose da Valva Aórtica/patologia , Calcinose/patologia , Células Cultivadas , Humanos , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Coelhos
10.
Lasers Med Sci ; 31(2): 289-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26714983

RESUMO

The aim of the present study was to investigate the therapeutic mechanism of low-level laser therapy (LLLT) in the mouse tail lymphedema model. Six-week-old female mice were classified into the laser treatment group, sham treatment group, and surgical control group (10 mice per group). LLLT was administered daily for 10 min from the surgical day to 11 days (12 times). Macrophage activation and lymphatic vessel regeneration were evaluated through immunohistochemical staining with anti-F4/80 and anti-LYVE-1 antibodies, respectively, at 12 days post-procedure. Quantitative real-time polymerase chain reaction (qPCR) was performed to measure messenger RNA (mRNA) expression of vascular endothelial growth factor A, B, C, R1, R2, and R3 (VEGF-A, VEGF-B, VEGF-C, VEGFR1, VEGFR2, and VEGFR3) at 12 days post-procedure. Student's t and one-way ANOVA tests were performed for statistical analyses. Significance was defined as p < 0.05. The thickness of the tail rapidly increased until 6 days in the laser and sham groups. The mice in the laser group showed a significantly decreased thickness compared with the sham group at 10 and 12 days. Immunohistochemistry assay revealed that LLLT reduced inflammation and induced new lymphatic vessel growth. qPCR showed that expressions of VEGFR3 were (p = 0.002) increased in the laser group. These results suggest that LLLT has anti-inflammatory and lymphangiogenetic effects for the management of lymphedema.


Assuntos
Terapia com Luz de Baixa Intensidade , Linfangiogênese/efeitos da radiação , Linfedema/radioterapia , Animais , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos da radiação , Inflamação/radioterapia , Vasos Linfáticos/fisiopatologia , Vasos Linfáticos/efeitos da radiação , Linfedema/genética , Linfedema/imunologia , Linfedema/fisiopatologia , Ativação de Macrófagos/efeitos da radiação , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Regeneração/efeitos da radiação , Fator A de Crescimento do Endotélio Vascular/genética
11.
Environ Toxicol ; 31(8): 998-1008, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25640594

RESUMO

Atrazine (ATR) is one of the most commonly applied broad-spectrum herbicides. Although ATR is well known to be a biologically hazardous molecule with potential toxicity in the immune system, the molecular mechanisms responsible for ATR-induced immunotoxicity remain unclear. In this study, we found that the immunotoxic properties of ATR were mediated through the induction of apoptotic changes in T lymphocytes. Mice exposed to ATR for 4 weeks exhibited a significant decrease in the number of spleen CD3(+) T lymphocytes, while CD19(+) B lymphocytes and nonlymphoid cells were unaffected. ATR exposure also led to inhibition of cell growth and induction of apoptosis in human Jurkat T-cells. Importantly, ATR triggered the activation of caspase-3 and the cleavage of caspase-8 and PARP, whereas it did not affect the release of cytochrome c from the mitochondria in Jurkat T-cells. In addition, ATR activated the unfolded protein response signaling pathway, as indicated by eIF2α phosphorylation and CHOP induction. Our results demonstrate that ATR elicited an immunotoxic effect by inducing ER stress-induced apoptosis in T-cells, therefore providing evidence for the molecular mechanism by which ATR induces dysregulation of the immune system. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 998-1008, 2016.


Assuntos
Apoptose/efeitos dos fármacos , Atrazina/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Herbicidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Caspase 8/metabolismo , Citocromos c/metabolismo , Humanos , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos ICR , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Baço/efeitos dos fármacos , Baço/patologia , Resposta a Proteínas não Dobradas
12.
Biochem Biophys Res Commun ; 458(3): 555-560, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25680466

RESUMO

Proteostasis regulation using naturally occurring small molecules has been considered as a promising strategy for manipulating cancer sensitivity and therapy. Here, we identify a small molecule Hsp90 inhibitor radicicol that induces intracellular accumulation of cytotoxic clusterin variant. In the mechanistic basis, this variant proved to be a product disposed from the stressed ER. During this process, inhibitory effect of radicicol on protein degradation results in cytosolic accumulation of glycan-deficient clusterin variant that signals cell death. These results provide a therapeutic insight into the targeted proteostasis perturbation of clusterin as an anti-cancer strategy.


Assuntos
Clusterina/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Macrolídeos/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Isoformas de Proteínas/metabolismo , Proteólise/efeitos dos fármacos
13.
Exp Cell Res ; 326(1): 10-21, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24928276

RESUMO

Mammalian ghrelin is derived from stomach and regulates growth hormone release and appetite by modulating GHS-R (Growth hormone secretagogue receptor) activity. Zebrafish has been developed as a forward genetic screening model system and previous screening identified a number of genes involved in multiple signaling pathways. In this system, ghrelin has been identified and its function and regulation have been shown to be highly conserved to that of mammals. Here, we identified three isoforms of zGHS-R1 and one of zGHS-R2 (zGHS-R2a), and characterized their expression, regulation and function. Three isoforms of zGHS-R1, which we named zGHS-R1a, zGHS-R1b, and zGHS-R1c, are generated by alternative splicing. The expression of zGHS-R1 is highly enriched in brain, intestine tissue, and skin tissues. Compared to zGHS-R1, the expression pattern of zGHS-R2a is rather evenly distributed. A 15 day fasting elevated expression of zGHS-R1 and zGHS-R2 transcripts in anterior intestine tissues, but not in brain. Whereas zGHS-R1a, zGHS-R1c, and zGHS-R2a appear to be presented on the plasma membrane, the localization of zGHS-R1b seems to be restricted in the intracellular region. Treatment of ghrelin agonist, L692,585 or goldfish ghrelin peptides but not rat ghrelin, elevated intracellular Ca(2+) level and phosphorylation of ERK in HEK-293 cells expressing zGHS-R1a, but not zGHS-R1b, zGHS-R1c, or zGHS-R2a. It appears that besides core ghrelin peptide sequence of GS/TSF additional amino acids are required for the activation of zGHS-R1a, as rat ghrelin induces neither intracellular Ca(2+) mobilization nor ERK phosphrylation. These results suggest that ghrelin system in zebrafish is highly conserved to that of mammals, and thus is an ideal in vivo model for dissecting ghrelin system.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Grelina/farmacologia , Receptores de Grelina/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Clonagem Molecular , Imunofluorescência , Células HEK293 , Humanos , Dados de Sequência Molecular , Isoformas de Proteínas , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Grelina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Peixe-Zebra
14.
J Cell Physiol ; 229(11): 1744-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24664887

RESUMO

Pentraxin-3 (PTX3), also known as tumor necrosis factor-stimulated gene 14 (TSG-14), is produced by immune and vascular cells in response to pro-inflammatory signals and is therefore a multipotent inflammatory mediator. The present study showed that during human osteoblast (OB) differentiation, precursor OBs (pOBs), but not mature OB, highly expressed PTX3. TNFα treatment elevated the PTX3 expression of pOBs. When mice were injected with lipopolysaccharide, which induces an inflammatory osteolytic condition characterized by trabecular bone destruction and high osteoclastogenesis, their bone marrow cells expressed elevated levels of PTX3 protein. Exogenous PTX3 did not directly affect osteoclast (OC) or OB differentiation. However, when pOBs and precursor OCs were co-cultured, exogenous PTX3 significantly increased the number of tartrate-resistant acid phosphatase-positive multinucleated cells (i.e., OC cells) by increasing the pOB mRNA expression and protein secretion of RANK ligand (RANKL). This was accompanied with increased Runt-related transcription factor 2 (Runx2) expression in the pOBs. Knock-down of endogenous PTX3 with small-interfering RNA did not change the osteogenic potential of pOBs but suppressed their production of RANKL and reduced osteoclastogenesis. Finally, TNFα treatment of the co-culture elevated PTX3 expression by the pOBs and increased OC formation. This effect was suppressed by PTX3 knock-down by decreasing RANKL expression. Thus, the PTX3-driven increase in the osteoclastogenic potential of pOBs appears to be mediated by the effect of PTX3 on pOB RANKL production. These findings suggest that PTX3 is an inflammatory mediator that contributes to the deteriorating osteolytic condition of inflamed bone. J. Cell. Physiol. 229: 1744-1752, 2014. © 2014 Wiley Periodicals, Inc.


Assuntos
Proteína C-Reativa/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteogênese , Ligante RANK/biossíntese , Componente Amiloide P Sérico/metabolismo , Animais , Células da Medula Óssea/patologia , Diferenciação Celular/efeitos dos fármacos , Técnicas de Cocultura , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos ICR , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteoprotegerina/metabolismo , Solubilidade , Fator de Necrose Tumoral alfa/farmacologia
15.
J Cell Physiol ; 229(12): 1963-71, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24733562

RESUMO

Beclin-1 plays a critical role in autophagy; however, it also contributes to other biological processes in a non-autophagic manner. Although studies have examined the non-autophagic role of autophagy proteins in the secretory function of osteoclasts (OC), the role of Beclin-1 is unclear. Here, we examined the role of Beclin-1 in OC differentiation, and found that mouse bone marrow macrophages (BMMs) showed increased expression of Beclin-1 upon RANKL stimulation in a p38- and NF-kappa B-dependent manner. During OC differentiation, Beclin-1 localized to the mitochondria, where it was involved in the production of mitochondrial intracellular reactive oxygen species. Knockdown of Beclin-1 in RANKL-primed BMMs led to a significant reduction in RANKL-dependent osteoclastogenesis, which was accompanied by reduced NFATc1 induction. Furthermore, knockdown of Beclin-1 inhibited RANKL-mediated activation of JNK and p38, both of which act downstream of reactive oxygen species, resulting in the suppression of NFATc1 induction. Finally, overexpression of constitutively active NFATc1 rescued the phenotype induced by Beclin-1 knockdown, indicating that Beclin-1 mediates RANKL-induced osteoclastogenesis by regulating NFATc1 expression. These findings show that Beclin-1 plays a non-autophagic role in RANKL-induced osteoclastogenesis by inducing the production of reactive oxygen species and NFATc1.


Assuntos
Proteínas Reguladoras de Apoptose/biossíntese , Diferenciação Celular/genética , Osteoclastos/citologia , Ligante RANK/biossíntese , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Células da Medula Óssea/citologia , Sobrevivência Celular/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Macrófagos/citologia , Camundongos , Ligante RANK/genética , Ligante RANK/metabolismo , RNA Interferente Pequeno
16.
Biochem Biophys Res Commun ; 447(4): 644-8, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24759232

RESUMO

Regulation of balance between lipid accumulation and energy consumption is a critical step for the maintenance of energy homeostasis. Here, we show that Panax red ginseng extract treatments increased energy expenditures and prevented mice from diet induced obesity. Panax red ginseng extracts strongly activated Hormone Specific Lipase (HSL) via Protein Kinase A (PKA). Since activation of HSL induces lipolysis in WAT and fatty acid oxidation in brown adipose tissue (BAT), these results suggest that Panax red ginseng extracts reduce HFD induced obesity by regulating lipid mobilization.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mobilização Lipídica/efeitos dos fármacos , Panax , Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia
17.
Biochem Biophys Res Commun ; 450(1): 105-9, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-24866235

RESUMO

Secretory clusterin (sCLU)/apolipoprotein J is a multifunctional glycoprotein that is ubiquitously expressed in various tissues. Reduced sCLU in the joints of patients with bone erosive disease is associated with disease activity; however, its exact role has yet to be elucidated. Here, we report that CLU is expressed and secreted during osteoclastogenesis in mouse bone marrow-derived macrophages (BMMs) that are treated with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). CLU-deficient BMMs obtained from CLU(-/-) mice exhibited no significant alterations in OC differentiation in comparison with BMMs obtained from wild-type mice. In contrast, exogenous sCLU treatment significantly inhibited OC formation in both BMMs and OC precursor cultures. The inhibitory effect of sCLU was more prominent in BMMs than OC precursor cultures. Interestingly, treating BMMs with sCLU decreased the proliferative effects elicited by M-CSF and suppressed M-CSF-induced ERK activation of OC precursor cells without causing apoptotic cell death. This study provides the first evidence that sCLU reduces OC formation by inhibiting the actions of M-CSF, thereby suggesting its protective role in bone erosion.


Assuntos
Clusterina/metabolismo , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/fisiologia , Osteoclastos/citologia , Osteoclastos/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Ativação de Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
18.
BMB Rep ; 57(1): 60-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38053293

RESUMO

The CRISPR-Cas9 system has significantly advanced regenerative medicine research by enabling genome editing in stem cells. Due to their desirable properties, mesenchymal stem cells (MSCs) have recently emerged as highly promising therapeutic agents, which properties include differentiation ability and cytokine production. While CRISPR-Cas9 technology is applied to develop MSC-based therapeutics, MSCs exhibit inefficient genome editing, and susceptibility to plasmid DNA. In this study, we compared and optimized plasmid DNA and RNP approaches for efficient genome engineering in MSCs. The RNP-mediated approach enabled genome editing with high indel frequency and low cytotoxicity in MSCs. By utilizing Cas9 RNPs, we successfully generated B2M-knockout MSCs, which reduced T-cell differentiation, and improved MSC survival. Furthermore, this approach enhanced the immunomodulatory effect of IFN-r priming. These findings indicate that the RNP-mediated engineering of MSC genomes can achieve high efficiency, and engineered MSCs offer potential as a promising therapeutic strategy. [BMB Reports 2024; 57(1): 60-65].


Assuntos
Edição de Genes , Células-Tronco Mesenquimais , Sistemas CRISPR-Cas/genética , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , DNA , Células-Tronco Mesenquimais/metabolismo
19.
Exp Mol Med ; 56(4): 1013-1026, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38684915

RESUMO

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anticancer agent because it kills cancer cells while sparing normal cells. However, many cancers, including pancreatic ductal adenocarcinoma (PDAC), exhibit intrinsic or acquired resistance to TRAIL, and the molecular mechanisms underlying TRAIL resistance in cancers, particularly in PDAC, remain unclear. In this study, we demonstrated that glutamine (Gln) endows PDAC cells with resistance to TRAIL through KDM4C-mediated epigenetic regulation of cFLIP. Inhibition of glutaminolysis significantly reduced the cFLIP level, leading to TRAIL-mediated formation of death-inducing signaling complexes. Overexpression of cFLIP dramatically rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Alpha-Ketoglutarate (aKG) supplementation significantly reversed the decrease in the cFLIP level induced by glutaminolysis inhibition and rescued PDAC cells from TRAIL/Gln deprivation-induced apoptosis. Knockdown of glutamic-oxaloacetic transaminase 2, which facilitates the conversion of oxaloacetate and glutamate into aspartate and aKG, decreased aKG production and the cFLIP level and activated TRAIL-induced apoptosis. AKG-mediated epigenetic regulation was necessary for maintaining a high level of cFLIP. Glutaminolysis inhibition increased the abundance of H3K9me3 in the cFLIP promoter, indicating that Gln-derived aKG production is important for Jumonji-domain histone demethylase (JHDM)-mediated cFLIP regulation. The JHDM KDM4C regulated cFLIP expression by binding to its promoter, and KDM4C knockdown sensitized PDAC cells to TRAIL-induced apoptosis. The present findings suggest that Gln-derived aKG production is required for KDM4C-mediated epigenetic regulation of cFLIP, which leads to resistance to TRAIL.


Assuntos
Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glutamina , Histona Desmetilases com o Domínio Jumonji , Neoplasias Pancreáticas , Ligante Indutor de Apoptose Relacionado a TNF , Humanos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Glutamina/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ácidos Cetoglutáricos/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Aspartato Aminotransferase Citoplasmática/metabolismo , Aspartato Aminotransferase Citoplasmática/genética , Animais , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA