Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Anal Chem ; 96(14): 5537-5545, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38545995

RESUMO

The chemical degradation of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-based aqueous energy storage and catalytic systems is pH sensitive. Herein, we voltammetrically monitor the local pH (pHlocal) at a Pt ultramicroelectrode (UME) upon electro-oxidation of imidazolium-linker functionalized TEMPO and show that its decrease is associated with the greater acidity of the cationic (oxidized) rather than radical (reduced) form of TEMPO. The protons that drive the decrease in pH arise from hydrolysis of the conjugated imidazolium-linker functional group of 4-[2-(N-methylimidazolium)acetoxy]-2,2,6,6-tetramethylpiperidine-1-oxyl chloride (MIMAcO-T), which was studied in comparison with 4-hydroxyl-TEMPO (4-OH-T). Voltammetric hysteresis is observed during the electrode oxidation of 4-OH-T and MIMAcO-T at a Pt UME in an unbuffered aqueous solution. The hysteresis arises from the pH-dependent formation and dissolution of Pt oxides, which interact with pHlocal in the vicinity of the UME. We find that electrogenerated MIMAcO-T+ significantly influences pHlocal, whereas 4-OH-T+ does not. Finite element analysis reveals that the thermodynamic and kinetic acid-base properties of MIMAcO-T+ are much more favorable than those of its reduced counterpart. Imidazolium-linker functionalized TEMPO molecules comprising different linking groups were also investigated. Reduced TEMPO molecules with carbonyl linkers behave as weak acids, whereas those with alkyl ether linkers do not. However, oxidized TEMPO+ molecules with alkyl ether linkers exhibit more facile acid-base kinetics than those with carbonyl ones. Density functional theory calculations confirm that OH- adduct formation on the imidazolium-linker functional group of TEMPO is responsible for the difference in the acid-base properties of the reduced and oxidized forms.

2.
Anal Chem ; 94(37): 12691-12698, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36074896

RESUMO

A "Water-in-Salt" electrolyte solution (WiSE) is a promising aqueous medium for lithium-ion batteries containing highly concentrated electrolytes. For the increased kinetic overpotential of water oxidation in WiSE, the formation of an interfacial layer (IFL) on a positively electrified electrode is crucial. Nonetheless, most related studies have been restricted to theoretical approaches. In this Article, we voltammetrically study the Cl-/Cl3-/Cl2 redox reaction on Pt and glassy carbon (GC) electrodes in WiSE containing LiTFSI (WiSELiTFSI) and demonstrate that careful monitoring of Cl-/Cl3- redox voltammetry can allow recognition of an IFL formed on a positively electrified electrode. The voltammetric wave attributed to the electro-oxidation of Cl- on a GC electrode was negatively more shifted as the molal concentration of LiTFSI was increased from 0.5 to 6 m, while there was no shift on Pt. Also, there was voltammetric resolution into two peaks associated with Cl-/Cl3- and Cl3-/Cl2 on the GC electrode in WiSELiTFSI, while only unresolved, one redox-paired voltammograms were observed on Pt, regardless of the molal concentration of LiTFSI. These two main voltammetric features indicate the LiTFSI-induced IFL coupled with Cl- and Cl3- on a GC electrode induced by an applied potential of ∼2 V versus the point of zero charge (PZC). We found other halide/halogen redox reactions did not show differentiated voltammetric behaviors in WiSELiTFSI, which demonstrates the uniqueness of the Cl-/Cl3- redox reaction for recognizing the IFL formed on a positively charged electrode surface. Lastly, a strong interaction between the IFL and Cl species was also confirmed by XPS measurements.


Assuntos
Carbono , Água , Eletrólitos , Halogênios , Lítio , Oxirredução
3.
Anal Chem ; 93(23): 8336-8344, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34075746

RESUMO

In this article, we present electrochemical interrogation for collision dynamics of electrogenerated individual polybromide ionic liquid (PBIL) droplets through chronoamperometry combined with fast scan cyclic voltammetry (CA-FSCV). In the CA mode of CA-FSCV, a Pt ultramicroelectrode (UME) acts as the electrochemical generator for PBIL droplets by holding the oxidation potential for Br- in a given time, while FSCV is repetitively performed at a certain frequency. In the FSCV mode of CA-FSCV, a Pt UME serves as the probe to electrochemically monitor Br3- reduction for an adsorbed PBIL droplet during collision with a high temporal resolution. Based on the newly introduced CA-FSCV, we can estimate the dynamic changes in the following parameters for a short collision time: the contact radius of a PBIL droplet on a Pt UME, the concentration of Br- in the droplet, and the apparent charge transfer rate constant for electro-reduction of Br3- to Br- in the droplet, koapp. Moreover, a computational calculation using molecular dynamics is presented that can explain the change in koapp as a function of time for Br- electrolysis in a PBIL droplet. Based on the quantitative estimation of the above parameters, we suggest a more advanced mechanism for the stochastic electrochemical collision process of a PBIL droplet. These findings are important for understanding QBr2n+1/QBr half redox reactions in aqueous energy storage systems, such as Zn-Br redox flow batteries and Br-related redox enhanced electrochemical capacitors.

4.
Sensors (Basel) ; 21(11)2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198822

RESUMO

Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.


Assuntos
Transdutores , Ultrassonografia de Intervenção , Estudos Transversais , Desenho de Equipamento , Ultrassonografia
5.
Anal Chem ; 92(12): 8159-8169, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32402193

RESUMO

A unique surface-enhanced Raman scattering (SERS) measurement scheme to discriminate gall bladder (GB) polyp and GB cancer by analysis of bile juice is proposed. Along with the high sensitivity of SERS, external voltage application during SERS measurement was incorporated to improve sample discriminability. For this purpose, Au nanodendrites were constructed on a screen-printed electrode (referred to as AuND@SPE), and Raman spectra of extracted aqueous phases from raw bile juice samples were acquired using the AuND@SPE at voltages from -300 to 300 mV. The sample spectra resembled that of bilirubin, possessing an open chain tetrapyrrole, showing that bilirubin derivatives in bile juice were mainly responsible for the observed peaks. Discrimination of GB polyp and GB cancer using just the normal SERS spectra was not achieved but became apparent when the spectra were acquired at a voltage of -100 mV. When voltage-applied SERS spectra of bilirubin and urobilinogen (one of bilirubin's derivatives) were examined, a sudden intensity elevation occurring at -100 mV was observed for urobilinogen but not bilirubin. Based on examination of corresponding cyclic voltammograms, the potential-driven strong adsorption of urobilinogen (no faradaic charge transfer) on AuND occurring at -100 mV induced a substantial increase in SERS intensity. It was presumed that the content of urobilinogen in the bile juice of a GB cancer patient would be higher than that of a GB polyp patient, and the contained urobilinogen was sensitively highlighted by applying -100 mV during SERS measurement, allowing clear discrimination of GB cancer against GB polyp.


Assuntos
Bile/química , Técnicas Eletroquímicas , Neoplasias da Vesícula Biliar/química , Vesícula Biliar/química , Pólipos/química , Urobilinogênio/análise , Estudos de Viabilidade , Humanos , Análise Espectral Raman , Propriedades de Superfície
6.
Anal Chem ; 92(18): 12226-12234, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32786447

RESUMO

Stochastic particle impact electrochemistry (SPIE) is considered one of the most important electro-analytical methods to understand the physicochemical properties of single entities. SPIE of individual insulating particles (IPs) has been particularly crucial for analyses of bioparticles. In this article, we introduce stochastic particle approach electrochemistry (SPAE) for electrochemical analyses of IPs, which is the advanced version of SPIE; SPAE is analogous to SPIE but focuses on deciphering a sudden current drop (SCD) by an IP-approach toward the edge of an ultramicroelectrode (UME). Polystyrene particles (PSPs) with and without different surface functionalities (-COOH and - NH3) as well as fixed human platelets (F-HPs) were used as model IPs. From theory based on finite element analysis, a sudden current drop (SCD) induced by an IP during electro-oxidation (or reduction) of a redox mediator on a UME can represent the rapid approach of an IP toward an edge of a UME, where a strong electric field is generated. It is also found that the amount of current drop, idrop, of an SCD depends strongly on both the size of an IP and the concentration of redox electrolyte. From simulations based on the SPAE model that fit the experimentally obtained SCDs of three types of PSPs or F-HP dispersed in solutions with two redox electrolytes, their size distribution histograms are estimated, from which their average radii determined by SPAE are compared to those from scanning electron microscopic images. In addition, the drift velocity and corresponding electric force of the PSPs and F-HPs during their approach toward an edge of a Pt UME are estimated, which cannot be addressed currently with SPIE. We further learned that the estimated drift velocity and the corresponding electric force could provide a relative order of the number of excess surface charges on the IPs.


Assuntos
Técnicas Eletroquímicas , Poliestirenos/análise , Eletricidade , Humanos , Microeletrodos , Tamanho da Partícula , Processos Estocásticos , Propriedades de Superfície
7.
Anal Chem ; 91(9): 5850-5857, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30942070

RESUMO

Energy storage systems (ESSs) using a Br-/Br2 redox reaction such as a Zn/Br redox flow battery (RFB) or a redox-enhanced electrochemical capacitor (Redox-EC) suffer from self-discharge reactions resulting in significant Coulombic loss. To inhibit the self-discharge, quaternary ammonium (Q+) and tetraalkylammonium (T+) bromide are added to form ionic liquid (QBr2 n+1) and solid (TBr3) polybromides during the ESS charging process. The electrochemical formation of liquid QBr2 n+1 and its electrochemical properties have been examined. The detailed mechanisms of ionic solid TBr3 formation, however, have not yet been explored. In this article, we analyzed the ionic liquid-to-solid phase transition of TBr3 particles using a time transient electrochemical method. We suggest the formation of ionic solid TBr3 particles via hydrated TBr3 droplets as an intermediate phase, which are generated by electro-oxidation of Br- in an aqueous TBr solution. We found the phase transition time of TBr3 particles is strongly dependent on the chemical structure of T+ and the concentration of TBr in an aqueous solution.

8.
Analyst ; 143(17): 4017-4021, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30091428

RESUMO

The speciation of quaternary ammonium polybromides (QBr2n+1) was quantitatively determined by voltammetric tribromide titration on a Pt ultramicroelectrode (UME). The concentration of Br3- in a QBr2n+1-water mixed solution (QBr2n+1-WMS) was electrochemically estimated by measuring the steady state current associated with the electro-reduction of Br3- in a linear sweep voltammogram (LSV). The pBr3- titration curves of QBr2n+1-WMSs show 2-4 plateaus, each of which relates to the formation of QBr2n+1 from Br3- and Br2. The values of pBr3- at these plateaus can be regarded as corrected equilibrium constants of QBr2n+1, K'eq(n), which is Keq(n)/γ±, where γ± is a mean activity coefficient in QBr2n+1-WMS. Based on the estimated K'eq(n), fractional diagrams of QBr2n+1 were obtained, which gave information on QBr2n+1 speciation.

9.
J Am Chem Soc ; 137(51): 16038-42, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26605855

RESUMO

Two heteroditopic monomers, namely a thiopropyl-functionalized tetrathiafulvalene-annulated calix[4]pyrrole (SPr-TTF-C[4]P 1) and phenyl C61 butyric acid (PCBA 2), have been used to assemble a chemically and electrochemically responsive supramolecular ensemble. Addition of an organic base initiates self-assembly of the monomers via a molecular switching event. This results in the formation of materials that may be disaggregated via the addition of an organic acid or electrolysis.

10.
J Am Chem Soc ; 136(1): 311-20, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328272

RESUMO

Fast-scan cyclic voltammetry (CV) and scanning electrochemical microscopy (SECM) were used to investigate the reduction of Sn(IV) as the hexabromo complex ion in a 2 M HBr-4 M NaBr medium. CV at scan rates to 100 V/s and SECM indicated the reaction pathway involves ligand-coupled electron transfer via an ECEC-DISP process: (1) one-electron reduction of Sn(IV)Br6(2-) to Sn(III)Br6(3-); (2) bromide dissociation of the reduced Sn(III)Br6(3-) to Sn(III)Br5(2-); (3) disproportionation of the reduced 2Sn(III)Br5(2-) to Sn(IV)Br5(-) and Sn(II)Br5(3-); (4) one-electron reduction of Sn(III)Br5(2-) to Sn(II)Br5(3-); (5) bromide dissociation from Sn(II)Br5 to Sn(II)Br4(2-). The intermediate Sn(III) species was confirmed by SECM(3-), where the Sn(III) generated at the Au tip was collected on a Au substrate in the tip generation/substrate collection mode when the distance between the tip and substrate was a few hundred nanometers.

11.
Nat Commun ; 15(1): 2323, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485914

RESUMO

Recent successes of foundation models in artificial intelligence have prompted the emergence of large-scale chemical pre-trained models. Despite the growing interest in large molecular pre-trained models that provide informative representations for downstream tasks, attempts for multimodal pre-training approaches on the molecule domain were limited. To address this, here we present a multimodal molecular pre-trained model that incorporates the modalities of structure and biochemical properties, drawing inspiration from recent advances in multimodal learning techniques. Our proposed model pipeline of data handling and training objectives aligns the structure/property features in a common embedding space, which enables the model to regard bidirectional information between the molecules' structure and properties. These contributions emerge synergistic knowledge, allowing us to tackle both multimodal and unimodal downstream tasks through a single model. Through extensive experiments, we demonstrate that our model has the capabilities to solve various meaningful chemical challenges, including conditional molecule generation, property prediction, molecule classification, and reaction prediction.

12.
Anal Chem ; 85(16): 7696-703, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23848061

RESUMO

High concentrations of copper chloride solutions (in the molar range) are used in several industrial applications. In this work, we investigated the species distribution of copper chloride complexes and how to measure the copper concentration precisely at high concentrations using electrochemical methods, by including migrational effects. The latter, in fact, can be useful in determining the nature of the species in solution undergoing electron transfer at the electrode. The study indicates that the main species of Cu(II) complexes in high chloride concentration is CuCl4(2-) and the main species of Cu(I) complexes are CuCl2(-) and CuCl3(2-). However insoluble CuCl is an intermediate in the process and can deactivate the electrode surface. This can be ameliorated by increasing the temperature or Cl(-) concentration. Under these conditions, voltammetry with an ultramicroelectrode (UME) can measure copper concentration with good precision even at 1 M Cu(II) concentrations in a few molar chloride. The main charge of the species can be determined by fitting to a migration model.

13.
J Am Chem Soc ; 134(39): 16265-74, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22946643

RESUMO

The electrochemistry, spectroscopy, and electrogenerated chemiluminescence (ECL) of a series of π-stacked poly(fluorenemethylene) oligomers (Fn, n = 1-6) were investigated. The pendant cofacially oriented fluorene moieties are essentially in contact with each other by Van der Waals interaction promoting electronic delocalization in these species. All six compounds give successive cyclic voltammetric one-electron (1e) oxidations in 1:1 acetonitrile/benzene (MeCN/Bz), and the multiple 1e transfer properties of all these compounds were confirmed by chronoamperometric experiments with an ultramicroelectrode and digital simulations. The potentials for oxidation of the successive 1e transfers can be explained in terms of electrostatic interactions among the fluorenes. The monomer (F1) shows one irreversible wave, while F2 shows two reversible 1e waves. F3 shows only two reversible 1e oxidation waves, which is consistent with the large energy to remove a third electron because of the greater electrostatic repulsion, so the third wave is shifted toward more positive potentials. Both F4 and F5 show three reversible 1e oxidation waves, while F6 shows four reversible 1e waves. The removal of the first electron from an oligomer becomes easier as n increases. The stability of the radical cations also increases with n. The removal of consecutive electrons from Fn can be correlated with the distance between fluorene moieties. No reduction peaks were observed except for some broad ones at ~-3.2 V vs SCE in THF, which is consitent with the wide highest occupied molecular orbital-lowest unoccupied molecular orbital gap in these compounds (absorbance at about 300 nm). No characteristic annihilation ECL signal was observed for these compounds in 1:1 MeCN/Bz mixed solvent. However, the ECL of F6 in the presence of the coreactant C(2)O(4)(2-) showed a long-wavelength ECL emission that was proposed to be electrolyzed byproduct from the radical cation.

14.
Anal Chem ; 84(11): 5159-63, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22591026

RESUMO

In this paper, we present a technique to rapidly and directly examine ultramicroelectrodes (UMEs) by white light vertical scanning interferometry (VSI). This technique is especially useful in obtaining topographic information with nanometer resolution without destruction or modification of the UME and in recognizing tips where the metal is recessed below the insulating sheath. Two gold UMEs, one with a metal radius a = 25 µm and relative insulating sheath radius RG = 2 and the other with a = 5 µm and RG = ∼1.5, were examined, and the average depth of the gold recessions was determined to be 1.15 µm and 910 nm, respectively. Electrodeposition of gold was performed to fill the recessed hole, and the depth was reduced to ∼200 nm. With the electrodeposited gold electrode and a conventional microelectrode (a = 25 µm) as a tip and substrate, respectively, a tip/substrate distance, d, of 600 nm was achieved allowing scanning electrochemical microscopy (SECM) in positive feedback mode at a close distance, which is useful for measuring fast kinetics.

15.
ACS Appl Mater Interfaces ; 14(10): 12168-12179, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35254047

RESUMO

The Zn-polyiodide redox flow battery is considered to be a promising aqueous energy storage system. However, in its charging process, the electrode kinetics of I- oxidation often suffer from an intrinsically generated iodine film (I2-F) on the cathode of the battery. Therefore, it is critical to both understand and enhance the observed slow electrode kinetics of I- oxidation by an electrochemically generated I2-F. In this article, we introduced an electrogenerated N-methyl-N-ethyl pyrrolidinium iodide (MEPI)-iodine (I2) solution, designated as MEPIS, and demonstrated that the electrode kinetics of I- oxidation were dramatically enhanced compared to an I2-F under conventional electrolyte conditions, such as NaI. We showed that this result mainly contributed to the fast electro-oxidation of triiodide (I3-), which exists in the shape of a I3--in-I2 network, [I3-·(I2)n]. Raman spectroscopic and electrochemical analyses showed that the composition of electrogenerated MEPIS changed from I3- to [I3-·(I2)n] via I5- as the anodic overpotential increased. We also confirmed that I- was electrochemically oxidized on a MEPIS-modified Pt electrode with fast electrode kinetics, which is clearly contrary to the nature of an I2-F derived from a NaI solution as a kinetic barrier of I- oxidation. Through stochastic MEPIS-particle impact electrochemistry and electrochemical impedance spectroscopy, we revealed that the enhanced electrode kinetics of I- oxidation in MEPIS can be attributed to the facilitated charge transfer of I3- oxidation in [I3-·(I2)n]. In addition, we found that the degree of freedom of I3- in a quaternary ammonium-based I2-F can also be critical to determine the kinetics of the electro-oxidation of I-, which is that MEPIS showed more enhanced charge-transfer kinetics of I- oxidation compared to tetrabutylammonium I3- due to the higher degree of freedom of I3-.

16.
ACS Appl Mater Interfaces ; 14(32): 36557-36569, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917313

RESUMO

Enhancement of redox-reversibility in electroactive species has been studied because of fundamental interest and their importance for energy storage systems. Various electroactive molecules suffer from redox-irreversible behavior, and this is a critical reason for their exclusion as redox electrolytes in energy storage systems. In this article, we fully demonstrated that ascorbic acid (ASC), which is an abundant but redox-irreversible molecule, can become redox-reversible when it is confined in microporous carbon regimes. From a theoretical perspective, redox-reversibility in an electrochemical reaction coupled with an irreversible chemical process can be greatly enhanced due to kinetic acceleration toward the inverse direction of the chemical reaction by accumulation of products in the nanoconfined regime. However, the kinetic acceleration in a nanoconfined domain shows limitations for enhancing the redox-reversibility, which indicates that stabilization of the species undergoing an irreversible chemical process is another important factor for redox-reversibility enhancement. The origin of nanoporous confinement of ASC and its enhanced redox-reversibility was rationalized by molecular dynamics simulations. We found that ASC-clusters of a fully protonated ASC and its conjugated base formed inside carbon pores, which would be a main driving force for its confinement in microporous carbon networks. Lastly, we demonstrated a prototype energy storage device using redox-reversible ASC in microporous carbon as the half electrode, which shows the feasibility of ASC as a possible redox electrolyte in an aqueous energy storage system.

17.
Korean J Ophthalmol ; 36(5): 423-434, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989070

RESUMO

PURPOSE: Netarsudil is a Rho kinase inhibitor and the first new class of clinically useful ocular hypotensive agents. In this study, we conducted a systematic literature review and meta-analysis to summarize and synthesize the available evidence on the efficacy and safety of fixed-dose combination (FDC) therapy with netarsudil/latanoprost in patients with glaucoma. METHODS: We identified relevant studies in PubMed, Ovid Medline, Embase, and Cochrane Central until April 2021. The quality of the studies and the level of evidence were assessed using the Risk of Bias tool. Efficacy was measured as the mean difference in reducing intraocular pressure (IOP), and safety was assessed by the risk of conjunctival hyperemia (CH) due to FDC therapy, netarsudil monotherapy, or latanoprost monotherapy. RESULTS: Four studies met the predefined eligibility criteria and were included in the meta-analysis. The mean difference in the reduction in IOP after 2 weeks and 4 to 6 weeks of drug administration was -2.41 mmHg (95% confidence interval [CI], -2.95 to -1.87) and -1.77 mmHg (95% CI, -2.31 to -1.87), respectively, in patients receiving FDC therapy versus those receiving latanoprost monotherapy. On the other hand, latanoprost monotherapy had a greater effect in reducing IOP than netarsudil monotherapy after 4 to 6 weeks of administration (mean difference, 0.95 mmHg; 95% CI, 0.43 to 1.47). The risk of CH was significantly higher with both FDC therapy and netarsudil monotherapy compared to latanoprost monotherapy in week 12, where the relative ratio was 3.01 (95% CI, 1.95 to 4.66) and 2.33 (95% CI, 1.54 to 3.54), each. CONCLUSIONS: Netarsudil/latanoprost FDC therapy has a significantly greater effect on reducing IOP than latanoprost alone. The symptoms of CH were mostly mild, and only a few glaucoma patients discontinued the medication owing to CH in earlier clinical trials. Therefore, it would be beneficial to consider the administration of netarsudil/latanoprost FDC therapy in patients with glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Hipertensão Ocular , Prostaglandinas F Sintéticas , Anti-Hipertensivos/uso terapêutico , Benzoatos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Humanos , Pressão Intraocular , Latanoprosta , Hipertensão Ocular/tratamento farmacológico , Prostaglandinas F Sintéticas/uso terapêutico , Timolol , Resultado do Tratamento , beta-Alanina/análogos & derivados , Quinases Associadas a rho
18.
J Nanosci Nanotechnol ; 11(1): 589-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21446503

RESUMO

Crystalline beta-Bi2O3 was synthesized through pH-dependent chemical bath deposition process, altering the morphology and evolution from nanoparticles (approximately 40 nm) at pH 9 to platelets (approximately 40 nm width and 0.8 microm length) at pH 12. In-situ aniline nucleation and growth at less basic condition on the beta-Bi2O3 increased the surface area and specific capacitance of the device. The morphological change of beta-Bi2O3/PANI composite from nanoparticles to platelets like nanostructure facilitated higher specific capacitance from 210 to 430 F/g at a scan rate of 10 mV/s with enhanced ionic diffusion and retention of specific capacitance up to 84% at higher scan rates.

19.
ACS Sens ; 5(7): 1943-1948, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32498511

RESUMO

This research introduces a method to directly detect serotonin in a single platelet through single-entity electrochemistry. Platelets isolated from human blood were analyzed by cyclic voltammetry and current-time measurements. When a single platelet collides with an ultramicroelectrode, serotonin inside the platelet is oxidized at the electrode surface, and an anodic current peak is consequently observed during measurement. The concentration of serotonin can be determined by integrating this peak current. In addition, this method can be used to determine the platelet concentration. Analysis of the collision frequency of platelets can provide information about the platelet concentration in the blood. As a result, platelet levels and serotonin concentrations in single platelets can be measured quickly and easily.


Assuntos
Plaquetas , Eletroquímica , Serotonina , Eletrodos , Humanos , Serotonina/análise
20.
ACS Appl Mater Interfaces ; 11(46): 43659-43670, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31618569

RESUMO

The inhibition of self-discharge in a redox-enhanced electrochemical capacitor (Redox-EC) is crucial for excellent energy retention. Heptyl viologen dibromide (HVBr2) was chosen as a strong candidate of a dual-redox species in Redox-EC due to its solid complexations during the charging process, at which HV2+ is electrochemically reduced to HV+• and form a solid complex, [HV+•·Br-], on an anode while Br- is electro-oxidized to Br3- and renders [HV2+·2Br3-] on a cathode. The solid complexes could not transfer across the separator, resulting in significant diminution of the self-discharge. In this Article, we present detailed electrochemical studies of formation of [HV2+·2Br3-] and [HV+•·Br-], their redox features, and galvanic exchange reactions between the two types of dual-redox ionic solids on a Pt ultra-microelectrode (UME) in neutral (0.33 M Na2SO4) and acidic (1 M H2SO4) solutions. Most importantly, through voltammetric and particle-impact electrochemical analyses, we found that the redox and galvanic exchange reactions of the two dual-redox ionic solid complexes involve H+ transfer, which is the key process to limit the overall kinetics of the electrochemical reactions. We also rationalize the proton-accompanied galvanic exchange reaction based on computational simulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA