Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 556(7701): 360-365, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670265

RESUMO

Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control2-4, a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly8-11, but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology12-18. Although a few studies18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct visualizations of macroscopic colour transformations. We anticipate that our strategy will aid in the rational design and fabrication of three-dimensional chiral nanostructures for use in plasmonic metamaterial applications.


Assuntos
Aminoácidos/química , Técnicas de Química Sintética/métodos , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Dicroísmo Circular , Cisteína/química , Ouro/efeitos da radiação , Luz , Nanopartículas Metálicas/efeitos da radiação , Rotação Ocular , Fotometria , Estereoisomerismo
2.
Nat Commun ; 13(1): 814, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145096

RESUMO

Smart textiles consist of discrete devices fabricated from-or incorporated onto-fibres. Despite the tremendous progress in smart textiles for lighting/display applications, a large scale approach for a smart display system with integrated multifunctional devices in traditional textile platforms has yet to be demonstrated. Here we report the realisation of a fully operational 46-inch smart textile lighting/display system consisting of RGB fibrous LEDs coupled with multifunctional fibre devices that are capable of wireless power transmission, touch sensing, photodetection, environmental/biosignal monitoring, and energy storage. The smart textile display system exhibits full freedom of form factors, including flexibility, bendability, and rollability as a vivid RGB lighting/grey-level-controlled full colour display apparatus with embedded fibre devices that are configured to provide external stimuli detection. Our systematic design and integration strategies are transformational and provide the foundation for realising highly functional smart lighting/display textiles over large area for revolutionary applications on smart homes and internet of things (IoT).

3.
J Chem Phys ; 134(21): 214501, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21663361

RESUMO

We investigate atomistic mechanisms governing hydrogen release and uptake processes in ammonia borane (AB) within the framework of the density functional theory. In order to determine the most favorable pathways for the thermal inter-conversion between AB and polyaminoborane plus H(2), we calculate potential energy surfaces for the corresponding reactions. We explore the possibility of enclosing AB in narrow carbon nanotubes to limit the formation of undesirable side-products such as the cyclic compound borazine, which hinder subsequent rehydrogenation of the system. We also explore the effects of nanoconfinement on the possible rehydrogenation pathways of AB and suggest the use of photoexcitation as a means to achieve dehydrogenation of AB at low temperatures.

4.
ACS Appl Mater Interfaces ; 13(26): 31236-31247, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34170098

RESUMO

Metal halide perovskites promise bright and narrow-band light-emitting diodes (LEDs). To this end, reliable understanding on structure-property relations is necessary, yet singling out one effect from others is difficult because photophysical and electronic functions of perovskite LEDs are interwoven each other. To resolve this problem, we herein employ self-assembled monolayers (SAMs) for interfacial engineering nanomaterials. Four different molecules that have the same anchor (thiol), different backbone (aryl vs alkyl) and different terminal group (amine vs pyridine vs methyl) are used to form SAMs at the interface with the thin film of a green-color perovskite, CH3NH3PbBr3. SAM-engineered perovskite films are characterized with X-ray diffraction (XRD), depth-profile X-ray photoelectron spectroscopy (XPS), Kelvin probe force microscopy (KPFM), scanning electron microscopy (SEM), time-resolved laser spectroscopy, and UV-vis absorption and emission spectroscopies. This permits access to how the chemical structure of molecule comprising SAM is related to the various chemical and physical features such as quality and grain size, cross-sectional atomic composition (Pb(0) vs Pb(II)), charge carrier lifetime, and charge mobility of perovskite films, leading to inferences of structure-property relations in the perovskite. Finally, we demonstrate that the trends observed in the model system stem from the affinity of SAM over the undercoordinated Pb ions of perovskite, and these are translated into considerably enhanced EQE (from 2.20 to 5.74%) and narrow-band performances (from 21.3 to 15.9 nm), without a noticeable wavelength shift in perovskite LEDs. Our work suggests that SAM-based interfacial engineering holds a promise for deciphering mechanisms of perovskite LEDs.

5.
Nat Commun ; 11(1): 805, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32041949

RESUMO

Photolithography is the prevalent microfabrication technology. It needs to meet resolution and yield demands at a cost that makes it economically viable. However, conventional far-field photolithography has reached the diffraction limit, which imposes complex optics and short-wavelength beam source to achieve high resolution at the expense of cost efficiency. Here, we present a cost-effective near-field optical printing approach that uses metal patterns embedded in a flexible elastomer photomask with mechanical robustness. This technique generates sub-diffraction patterns that are smaller than 1/10th of the wavelength of the incoming light. It can be integrated into existing hardware and standard mercury lamp, and used for a variety of surfaces, such as curved, rough and defect surfaces. This method offers a higher resolution than common light-based printing systems, while enabling parallel-writing. We anticipate that it will be widely used in academic and industrial productions.

6.
Adv Mater ; 31(24): e1900067, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31025458

RESUMO

Metal halide perovskites (MHPs) have attracted significant attention as light-emitting materials owing to their high color purities and tunabilities. A key issue in perovskite light-emitting diodes (PeLEDs) is the fabrication of an optimal charge transport layer (CTL), which has desirable energy levels for efficient charge injection while blocking opposite charges and enabling perovskite layer growth with reduced interfacial defects. Herein, two poly(fluorene-phenylene)-based anionic conjugated polyelectrolytes (CPEs) with different counterions (K+ and tetramethylammonium (TMA+ )) are presented as multifunctional passivating and hole-transporting layers (HTLs). The crystal growth of MHPs grown on different HTLs is investigated through X-ray photoelectron spectroscopy, X-ray diffraction, and density functional theory calculation. The CPE bearing the TMA+ counterions remarkably improves the growth of perovskites with suppressed interfacial defects, leading to significantly enhanced emission properties and device performance. The luminescent properties are further enhanced via aging and electrical stress application with effective rearrangement of the counterions on the interfacial defects in the perovskites. Finally, efficient formamidinium lead tribromide-based quasi-2D PeLEDs with an external quantum efficiency of 10.2% are fabricated. Using CPEs with varying counterions as a CTL can serve as an effective method for controlling the interfacial defects and improving perovskite-based optoelectronic device properties.

7.
Sci Rep ; 9(1): 2265, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783170

RESUMO

The coupling of the surface plasmon near-field into the sensing medium is key to the sensitivity of surface plasmon-based sensing devices. A low-index dielectric is necessary for the sensing medium to support a highly-penetrating surface plasmon evanescent field that extends well into the dielectric medium. The air-like refractive index, n, of an aerogel substrate provides another dimension for ultralow-index plasmonic devices. In this paper, we experimentally observed an angular surface plasmon resonance dip at 74° with the ultralow-index aerogel substrate, as was expected from theory. We also demonstrated the comparatively high-sensitivity surface plasmon resonance wavelength, λ, while the change in Δλ/Δn with different substrates was studied in detail. A 740 nm-period metal grating was imprinted on aerogel (n = 1.08) and polydimethylsiloxane (PDMS; n = 1.4) substrates. The ultraviolet-visible-near-infrared spectra were observed in the reflection mode on the grating, resulting in sensitivities of 740.2 and 655.9 nm/RIU for the aerogel and PDMS substrates, respectively. Numerical simulations were performed to understand the near-field of the surface plasmon, which demonstrated resonances well correlated with the experimentally observed results. The near-field due to excitation of the surface plasmon polaritons is observed to be more confined and to penetrate deeper into the sensing medium when a low-index substrate is used.

8.
Adv Mater ; 29(13)2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28117526

RESUMO

A thermochromic-based interactive sensor that can generate local color switching and pressure mapping is developed using a 2D array of resistive pressure sensor switch. This thermochromic-based interactive sensor will enable the visualization of localized information in arbitrary shapes with dynamic responses in the context of serial/parallel pressure mapping and quantifying capability without optoelectronic arrays.

9.
Sci Rep ; 6: 38514, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982066

RESUMO

Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

10.
Phys Rev Lett ; 100(23): 236102, 2008 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-18643519

RESUMO

We use ab initio density functional calculations to study the chemical functionalization of single-wall carbon nanotubes and graphene monolayers by silyl (SiH(3)) radicals and hydrogen. We find that silyl radicals form strong covalent bonds with graphene and nanotube walls, causing local structural relaxations that enhance the s p(3) character of these graphitic nanostructures. Silylation transforms all carbon nanotubes into semiconductors, independent of their chirality. Calculated vibrational spectra suggest that specific frequency shifts can be used as a signature of successful silylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA