Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Genet ; 60(6): 1946-1962, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35181843

RESUMO

Ovarian cancer (OC) progression is related to many functional molecules, including circular RNAs (circRNAs). Hsa_circ_0061140 (circ_0061140) promoted cell growth and metastasis in OC. The aim of this study was to explore a specific functional mechanism of circ_0061140. Reverse transcription-quantitative polymerase chain reaction was performed for expression analysis of circ_0061140, microRNA-361-5p (miR-361-5p), and Ras-like protein in rat brain 1A (RAB1A). Cell proliferation was determined using Cell Counting Kit-8 assay, EdU assay, and colony formation assay. The migration and invasion were assessed through transwell assay. Tube formation assay was used for angiogenesis analysis. Cell apoptosis was evaluated using flow cytometry. The protein levels of epithelial-to-mesenchymal transition (EMT) markers and RAB1A were detected via western blot. Target analysis was performed by dual-luciferase reporter assay and RNA immunoprecipitation assay. In vivo research was conducted using xenograft model. The circ_0061140 level was upregulated in OC samples and cells. Downregulation of circ_0061140 impeded proliferation, migration, invasion, EMT, and angiogenesis of OC cells. Circ_0061140 directly interacted with miR-361-5p to act as a miRNA sponge. The miR-361-5p inhibition reversed the si-circ_0061140-induced anti-tumor function in OC cells. RAB1A was a downstream target of miR-361-5p, and miR-361-5p served as a tumor repressor in OC via inhibiting the level of RAB1A. Circ_0061140 could increase the RAB1A expression by sponging miR-361-5p in OC cells. Circ_0061140 also facilitated tumorigenesis in vivo through targeting the miR-361-5p/RAB1A axis. All results demonstrated that circ_0061140 promoted OC development by inhibiting miR-361-5p to upregulate the expression of RAB1A.


Assuntos
MicroRNAs , Neoplasias Ovarianas , RNA Circular , Proteínas rab1 de Ligação ao GTP , Animais , Feminino , Humanos , Movimento Celular , Proliferação de Células , MicroRNAs/genética , Neoplasias Ovarianas/genética , RNA Circular/genética , Proteínas rab1 de Ligação ao GTP/genética
2.
Reprod Sci ; 29(9): 2636-2646, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35355231

RESUMO

Circular RNA (circRNA) has been reported to participate in the progression of cervical cancer (CC). Studies on the role and mechanism of circ_0000263 in CC are limited, and more studies are needed. The expression of circ_0000263, microRNA (miR)-1179 and ABL proto-oncogene 2 (ABL2) mRNA in tissues and cells was analyzed by quantitative real-time PCR. The proliferation and apoptosis of CC cells were determined using cell counting kit 8 assay, Edu assay, colony formation assay and flow cytometry. The protein expression of proliferation markers, apoptosis markers and ABL2 was detected by western blot analysis. The interaction between RNAs was estimated via dual-luciferase reporter assay. Xenograft models were applied to explore the effect of circ_0000263 knockdown on CC tumorigenesis. Circ_0000263 was highly expressed in CC tumor tissues. Silencing of circ_0000263 suppressed CC cell proliferation and increased apoptosis. Circ_0000263 served as a sponge for miR-1179, and miR-1179 inhibitor reversed the regulation of si-circ_0000263 on CC cell proliferation and apoptosis. ABL2 could be targeted by miR-1179, and circ_0000263 could sponge miR-1179 to regulate ABL2. Overexpression of ABL2 reversed the anti-proliferation and pro-apoptosis roles of miR-1179 in CC cells. In addition, circ_0000263 knockdown reduced CC tumor growth by miR-1179/ABL2 axis. In brief, the results demonstrated that circ_0000263 exerted an oncogene role in CC, which suggested that circ_0000263 might be a promising therapeutic target for CC.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA