RESUMO
The tick-borne encephalitis virus (TBEV) serocomplex includes several medically important flavivirus members endemic to Europe, Asia, and North America, which can induce severe neuroinvasive or viscerotropic diseases with unclear mechanisms of pathogenesis. Langat virus (LGTV) shares a high sequence identity with TBEV but exhibits lower pathogenic potential in humans and serves as a model for virus-host interactions. In this study, we demonstrated that LGTV infection inhibits the activation of gp130/JAK/STAT (Janus kinases (JAK) and signal transducer and activator of transcription (STAT)) signaling, which plays a pivotal role in numerous biological processes. Our data show that the LGTV-infected cells had significantly lower phosphorylated STAT3 (pSTAT3) protein upon oncostatin M (OSM) stimulation than the mock-infected control. LGTV infection blocked the nuclear translocation of STAT3 without a significant effect on total STAT3 protein level. LGTV inhibited JAK1 activation and reduced gp130 protein expression in infected cells, with the viral NS5 protein mediating this effect. TBEV infection also reduces gp130 level. On the other hand, pretreatment of Vero cells with OSM significantly reduces LGTV replication, and STAT1/STAT2 knockdown had little effect on OSM-mediated antiviral effect, which suggests it is independent of STAT1/STAT2 and, instead, it is potentially mediated by STAT3 signlaing. These findings shed light on the LGTV and TBEV-cell interactions, offering insights for the future development of antiviral therapeutics and improved vaccines.
Assuntos
Fenômenos Biológicos , Vírus da Encefalite Transmitidos por Carrapatos , Animais , Chlorocebus aethiops , Humanos , Janus Quinases/metabolismo , Células Vero , Receptor gp130 de Citocina/metabolismo , Antivirais/metabolismoRESUMO
Hepatitis E virus (HEV) is a positive-sense, single-stranded RNA virus and causes primarily acute self-limiting infections. The ORF1 of the HEV genome encodes a polyprotein around 190 kDa, which contains several putative domains, including helicase and RNA-dependent RNA polymerase. The HEV-encoded helicase is a member of the superfamily 1 helicase family and possesses multiple enzymatic functions, such as RNA 5'-triphosphatase, RNA unwinding, and NTPase, which are thought to contribute to viral RNA synthesis. However, the helicase interaction with cellular proteins remains less known. Oxysterol binding protein (OSBP) is a lipid regulator that shuffles between the Golgi apparatus and the endoplasmic reticulum for cholesterol and phosphatidylinositol-4-phosphate exchange and controls the efflux of cholesterol from cells. In this study, the RNAi-mediated silencing of OSBP significantly reduced HEV replication. Further studies indicate that the HEV helicase interacted with OSBP, shown by co-immunoprecipitation and co-localization in co-transfected cells. The presence of helicase blocked OSBP preferential translocation to the Golgi apparatus. These results demonstrate that OSBP contributes to HEV replication and enrich our understanding of the HEV-cell interactions.
Assuntos
Complexo de Golgi , Vírus da Hepatite E , Receptores de Esteroides , Replicação Viral , Vírus da Hepatite E/fisiologia , Vírus da Hepatite E/genética , Receptores de Esteroides/metabolismo , Receptores de Esteroides/genética , Humanos , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Interações Hospedeiro-Patógeno , Linhagem Celular , Ligação Proteica , Hepatite E/virologia , Hepatite E/metabolismoRESUMO
Background: Streptococcus suis is an encapsulated zoonotic pathogen. Increasing antimicrobial resistance invokes the need for effective vaccines. Despite many attempts to develop an effective vaccine, none is currently available. Methods: A capsular polysaccharide (CPS)-expressing attenuated mutant 2015033 was constructed by deleting 5 virulence-associated factors (sly, scpA, ssnA, fhb, and ssads) in an infective S. suis strain SC19. The safety and immune effect of 2015033 were determined both in vitro and in vivo. Results: Deletion of 5 genes did not impact the growth ability and CPS generation of 2015033, and the mutant exhibited no cytotoxicity in different cell models. 2015033 was more easily eliminated by innate immunity both in vitro and in vivo. In addition, 2015033 showed a diminished invasive ability in different mouse organs (brain, lung, and liver) and avirulent properties in mice associated with weak inflammation-inducing ability. Immunization with 2015033 triggered T cell-dependent immunity, suppressed streptococcal toxic shock-like syndrome, and conferred sequence type-independent protection to mice during infection. Conclusions: This study presents the feasibility of the strategy of multigene deletion for the development of promising live vaccines against invasive encapsulated pathogens.
Assuntos
Choque Séptico/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus suis/imunologia , Vacinas Atenuadas/imunologia , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/imunologia , Encéfalo/patologia , Células CACO-2 , Proteção Cruzada/imunologia , Modelos Animais de Doenças , Feminino , Deleção de Genes , Genes Bacterianos/genética , Humanos , Imunidade Inata , Imunização , Fígado/patologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Choque Séptico/imunologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/patologia , Streptococcus suis/genética , Linfócitos T/imunologia , Vacinação , Virulência/genética , Fatores de Virulência/genéticaRESUMO
Zika virus (ZIKV) is a mosquito-borne flavivirus and causes an infection associated with congenital Zika syndrome and Guillain-Barre syndrome. The mechanism of ZIKV-mediated neuropathogenesis is not well understood. In this study, we discovered that ZIKV induces degradation of the Numb protein, which plays a crucial role in neurogenesis by allowing asymmetric cell division during embryonic development. Our data show that ZIKV reduced the Numb protein level in a time- and dose-dependent manner. However, ZIKV infection appears to have minimal effect on the Numb transcript. Treatment of ZIKV-infected cells with a proteasome inhibitor restores the Numb protein level, which suggests the involvement of the ubiquitin-proteasome pathway. In addition, ZIKV infection shortens the half-life of the Numb protein. Among the ZIKV proteins, the capsid protein significantly reduces the Numb protein level. Immunoprecipitation of the Numb protein co-precipitates the capsid protein, indicating the interaction between these two proteins. These results provide insights into the ZIKV-cell interaction that might contribute to its impact on neurogenesis.
Assuntos
Flavivirus , Infecção por Zika virus , Zika virus , Animais , Proteínas do Capsídeo/metabolismo , Neurogênese , Zika virus/metabolismoRESUMO
The ongoing SARS-CoV-2/COVID-19 pandemic caused a global public health crisis. Yet, everyone's response to SARS-CoV-2 infection varies, and different viral variants confer diverse pathogenicity. Thus, it is imperative to understand how viral determinants contribute to COVID-19. Viral ORF3a protein is one of those viral determinants, as its functions are linked to induction of cell and tissues damages, disease severity and cytokine storm that is a major cause of COVID-19-related death. ORF3a is a membrane-associated protein. Upon synthesis, it is transported from endoplasmic reticulum, Golgi apparatus to plasma membrane and subcellular endomembranes including endosomes and lysosomes. However, how ORF3a is transported intracellularly remains elusive. The goal of this study was to carry out a systematic mutagenesis study to determine the structural relationship of ORF3a protein with its subcellular locations. Single amino acid (aa) and deletion mutations were generated in the putative function-relevant motifs and other regions of interest. Immunofluorescence and ImageJ analyses were used to determine and quantitate subcellular locations of ORF3a mutants in comparison with wildtype ORF3a. The wildtype ORF3a localizes predominantly (Pearson's coefficients about 0.8) on the membranes of endosomes and lysosomes. Consistent with earlier findings, deletion of the YXXΦ motif, which is required for protein export, retained ORF3a in the Golgi apparatus. Interestingly, mutations in a double glycine (diG) region (aa 187-188) displayed a similar phenotype to the YXXΦ deletion, implicating a similar role of the diG motif in intracellular transport. Indeed, interrupting any one of the two glycine residues such as deletion of a single (dG188), both (dG187/dG188) or substitution (G188Y) of these residues led to ORF3a retention in the Golgi apparatus (Pearson's coefficients ≥0.8). Structural analyses further suggest that the diG motif supports a type-II ß-turn between the anti-parallel ß4 and ß5 sheets and connects to the YXXΦ motif via hydrogen bonds between two monomers. The diG- YXXΦ interaction forms a hand-in-hand configuration that could facilitate dimerization. Together, these observations suggest a functional role of the diG motif in intracellular transport of ORF3a.
RESUMO
KPNA2/importin-alpha1 (karyopherin subunit alpha 2) is the primary nucleocytoplasmic transporter for some transcription factors to activate cellular proliferation and differentiation. Aberrant increase of KPNA2 level is identified as a prognostic marker in a variety of cancers. Yet, the turnover mechanism of KPNA2 remains unknown. Here, we demonstrate that KPNA2 is degraded via the chaperone-mediated autophagy (CMA) and that Zika virus (ZIKV) enhances the KPNA2 degradation. KPNA2 contains a CMA motif, which possesses an indispensable residue Gln109 for the CMA-mediated degradation. RNAi-mediated knockdown of LAMP2A, a vital component of the CMA pathway, led to a higher level of KPNA2. Moreover, ZIKV reduced KPNA2 via the viral NS2A protein, which contains an essential residue Thr100 for inducing the CMA-mediated KPNA2 degradation. Notably, mutant ZIKV with T100A alteration in NS2A replicates much weaker than the wild-type virus. Also, knockdown of KPNA2 led to a higher ZIKV viral yield, which indicates that KPNA2 mediates certain antiviral effects. These data provide insights into the KPNA2 turnover and the ZIKV-cell interactions.
Assuntos
Autofagia Mediada por Chaperonas , Proteólise , Proteínas não Estruturais Virais/metabolismo , Zika virus/metabolismo , alfa Carioferinas/metabolismo , Motivos de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular Tumoral , Chlorocebus aethiops , Glutamina/genética , Células HEK293 , Meia-Vida , Humanos , Lisossomos/metabolismo , Mutação/genética , Relação Estrutura-Atividade , Treonina/metabolismo , Células Vero , Proteínas não Estruturais Virais/química , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/virologia , alfa Carioferinas/químicaRESUMO
Gram-negative bacteria have evolved numerous two-component systems (TCSs) to cope with external environmental changes. The CpxA/CpxR TCS consisting of the kinase CpxA and the regulator CpxR, is known to be involved in the biofilm formation and virulence of Escherichia coli. However, the role of CpxA/CpxR remained unclear in Actinobacillus pleuropneumoniae, a bacterial pathogen that can cause porcine contagious pleuropneumonia (PCP). In this report, we show that CpxA/CpxR contributes to the biofilm formation ability of A. pleuropneumoniae. Furthermore, we demonstrate that CpxA/CpxR plays an important role in the expression of several biofilm-related genes in A. pleuropneumoniae, such as rpoE and pgaC. Furthermore, The results of electrophoretic mobility shift assays (EMSAs) and DNase I footprinting analysis demonstrate that CpxR-P can regulate the expression of the pgaABCD operon through rpoE. In an experimental infection of mice, the animals infected with a cpxA/cpxR mutant exhibited delayed mortality and lower bacterial loads in the lung than those infected with the wildtype bacteria. In conclusion, these results indicate that the CpxA/CpxR TCS plays a contributing role in the biofilm formation and virulence of A. pleuropneumoniae.
Assuntos
Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Virulência/genética , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/crescimento & desenvolvimento , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Proteínas de Ligação a DNA , Desoxirribonuclease I/análise , Modelos Animais de Doenças , Ensaio de Desvio de Mobilidade Eletroforética , Escherichia coli/genética , Feminino , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Óperon , Pegadas de Proteínas , Fator sigma/genética , Fator sigma/metabolismo , Transcriptoma , Virulência/genética , Fatores de Virulência/metabolismoRESUMO
Streptococcus suis is a highly invasive pathogen that can cause sepsis and meningitis in pigs and humans. However, we have limited understanding of the mechanisms S. suis uses to evade innate immunity. To investigate the involvement of the two-component signal transduction system of S. suis in host immune defense, we examined the expression of 15 response regulators of S. suis following stimulation with polymorphonuclear leukocytes (PMNs). We found that several response regulators were significantly up-regulated including vraR. Thus, we constructed an isogenic deletion mutant of vraSR genes in S. suis and demonstrated VraSR promotes both bacterial survival in human blood and resistance to human PMN-mediated killing. The VraSR mutant was more susceptible to phagocytosis by human PMNs and had greater sensitivity to oxidant and lysozyme than wild-type S. suis. Furthermore, in vitro findings and in vivo evidence from a mouse infection model together strongly demonstrate that ΔvraSR had greatly attenuated virulence compared with wild-type S. suis. Collectively, our data reveal that VraSR is a critical regulatory system that contributes to the survival of S. suis and its ability to defend against host innate immunity.