Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8016): 401-411, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38811727

RESUMO

Apes possess two sex chromosomes-the male-specific Y chromosome and the X chromosome, which is present in both males and females. The Y chromosome is crucial for male reproduction, with deletions being linked to infertility1. The X chromosome is vital for reproduction and cognition2. Variation in mating patterns and brain function among apes suggests corresponding differences in their sex chromosomes. However, owing to their repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the methodology developed for the telomere-to-telomere (T2T) human genome, we produced gapless assemblies of the X and Y chromosomes for five great apes (bonobo (Pan paniscus), chimpanzee (Pan troglodytes), western lowland gorilla (Gorilla gorilla gorilla), Bornean orangutan (Pongo pygmaeus) and Sumatran orangutan (Pongo abelii)) and a lesser ape (the siamang gibbon (Symphalangus syndactylus)), and untangled the intricacies of their evolution. Compared with the X chromosomes, the ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements-owing to the accumulation of lineage-specific ampliconic regions, palindromes, transposable elements and satellites. Many Y chromosome genes expand in multi-copy families and some evolve under purifying selection. Thus, the Y chromosome exhibits dynamic evolution, whereas the X chromosome is more stable. Mapping short-read sequencing data to these assemblies revealed diversity and selection patterns on sex chromosomes of more than 100 individual great apes. These reference assemblies are expected to inform human evolution and conservation genetics of non-human apes, all of which are endangered species.


Assuntos
Hominidae , Cromossomo X , Cromossomo Y , Animais , Feminino , Masculino , Gorilla gorilla/genética , Hominidae/genética , Hominidae/classificação , Hylobatidae/genética , Pan paniscus/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Pongo pygmaeus/genética , Telômero/genética , Cromossomo X/genética , Cromossomo Y/genética , Evolução Molecular , Variações do Número de Cópias de DNA/genética , Humanos , Espécies em Perigo de Extinção , Padrões de Referência
2.
Nature ; 617(7960): 312-324, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37165242

RESUMO

Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals1. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample.


Assuntos
Genoma Humano , Genômica , Humanos , Diploide , Genoma Humano/genética , Haplótipos/genética , Análise de Sequência de DNA , Genômica/normas , Padrões de Referência , Estudos de Coortes , Alelos , Variação Genética
3.
Genome Res ; 32(5): 893-903, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483961

RESUMO

Methods that use a linear genome reference for genome sequencing data analysis are reference-biased. In the field of clinical genetics for rare diseases, a resulting reduction in genotyping accuracy in some regions has likely prevented the resolution of some cases. Pangenome graphs embed population variation into a reference structure. Although pangenome graphs have helped to reduce reference mapping bias, further performance improvements are possible. We introduce VG-Pedigree, a pedigree-aware workflow based on the pangenome-mapping tool of Giraffe and the variant calling tool DeepTrio using a specially trained model for Giraffe-based alignments. We demonstrate mapping and variant calling improvements in both single-nucleotide variants (SNVs) and insertion and deletion (indel) variants over those produced by alignments created using BWA-MEM to a linear-reference and Giraffe mapping to a pangenome graph containing data from the 1000 Genomes Project. We have also adapted and upgraded deleterious-variant (DV) detecting methods and programs into a streamlined workflow. We used these workflows in combination to detect small lists of candidate DVs among 15 family quartets and quintets of the Undiagnosed Diseases Program (UDP). All candidate DVs that were previously diagnosed using the Mendelian models covered by the previously published methods were recapitulated by these workflows. The results of these experiments indicate that a slightly greater absolute count of DVs are detected in the proband population than in their matched unaffected siblings.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala , Mutação INDEL , Linhagem , Software , Fluxo de Trabalho
4.
Nat Methods ; 18(11): 1322-1332, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34725481

RESUMO

Long-read sequencing has the potential to transform variant detection by reaching currently difficult-to-map regions and routinely linking together adjacent variations to enable read-based phasing. Third-generation nanopore sequence data have demonstrated a long read length, but current interpretation methods for their novel pore-based signal have unique error profiles, making accurate analysis challenging. Here, we introduce a haplotype-aware variant calling pipeline, PEPPER-Margin-DeepVariant, that produces state-of-the-art variant calling results with nanopore data. We show that our nanopore-based method outperforms the short-read-based single-nucleotide-variant identification method at the whole-genome scale and produces high-quality single-nucleotide variants in segmental duplications and low-mappability regions where short-read-based genotyping fails. We show that our pipeline can provide highly contiguous phase blocks across the genome with nanopore reads, contiguously spanning between 85% and 92% of annotated genes across six samples. We also extend PEPPER-Margin-DeepVariant to PacBio HiFi data, providing an efficient solution with superior performance over the current WhatsHap-DeepVariant standard. Finally, we demonstrate de novo assembly polishing methods that use nanopore and PacBio HiFi reads to produce diploid assemblies with high accuracy (Q35+ nanopore-polished and Q40+ PacBio HiFi-polished).


Assuntos
Genes , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Nanoporos , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA/métodos , Software , Genoma Humano , Humanos , Anotação de Sequência Molecular
5.
BMC Bioinformatics ; 24(1): 197, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173615

RESUMO

Large-scale population variant data is often used to filter and aid interpretation of variant calls in a single sample. These approaches do not incorporate population information directly into the process of variant calling, and are often limited to filtering which trades recall for precision. In this study, we develop population-aware DeepVariant models with a new channel encoding allele frequencies from the 1000 Genomes Project. This model reduces variant calling errors, improving both precision and recall in single samples, and reduces rare homozygous and pathogenic clinvar calls cohort-wide. We assess the use of population-specific or diverse reference panels, finding the greatest accuracy with diverse panels, suggesting that large, diverse panels are preferable to individual populations, even when the population matches sample ancestry. Finally, we show that this benefit generalizes to samples with different ancestry from the training data even when the ancestry is also excluded from the reference panel.


Assuntos
Aprendizado Profundo , Humanos , Frequência do Gene , Sequenciamento Completo do Genoma , Estudo de Associação Genômica Ampla , Genoma Humano , Polimorfismo de Nucleotídeo Único , Sequenciamento de Nucleotídeos em Larga Escala
6.
Bioinformatics ; 36(24): 5582-5589, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33399819

RESUMO

MOTIVATION: Population-scale sequenced cohorts are foundational resources for genetic analyses, but processing raw reads into analysis-ready cohort-level variants remains challenging. RESULTS: We introduce an open-source cohort-calling method that uses the highly accurate caller DeepVariant and scalable merging tool GLnexus. Using callset quality metrics based on variant recall and precision in benchmark samples and Mendelian consistency in father-mother-child trios, we optimize the method across a range of cohort sizes, sequencing methods and sequencing depths. The resulting callsets show consistent quality improvements over those generated using existing best practices with reduced cost. We further evaluate our pipeline in the deeply sequenced 1000 Genomes Project (1KGP) samples and show superior callset quality metrics and imputation reference panel performance compared to an independently generated GATK Best Practices pipeline. AVAILABILITY AND IMPLEMENTATION: We publicly release the 1KGP individual-level variant calls and cohort callset (https://console.cloud.google.com/storage/browser/brain-genomics-public/research/cohort/1KGP) to foster additional development and evaluation of cohort merging methods as well as broad studies of genetic variation. Both DeepVariant (https://github.com/google/deepvariant) and GLnexus (https://github.com/dnanexus-rnd/GLnexus) are open-source, and the optimized GLnexus setup discovered in this study is also integrated into GLnexus public releases v1.2.2 and later. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

7.
Hum Mol Genet ; 27(R1): R63-R71, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29648622

RESUMO

The human genome is now investigated through high-throughput functional assays, and through the generation of population genomic data. These advances support the identification of functional genetic variants and the prediction of traits (e.g. deleterious variants and disease). This review summarizes lessons learned from the large-scale analyses of genome and exome data sets, modeling of population data and machine-learning strategies to solve complex genomic sequence regions. The review also portrays the rapid adoption of artificial intelligence/deep neural networks in genomics; in particular, deep learning approaches are well suited to model the complex dependencies in the regulatory landscape of the genome, and to provide predictors for genetic variant calling and interpretation.


Assuntos
Aprendizado Profundo/tendências , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Genômica/tendências , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/tendências , Humanos , Análise de Sequência de DNA , Software
9.
medRxiv ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38585974

RESUMO

Most current studies rely on short-read sequencing to detect somatic structural variation (SV) in cancer genomes. Long-read sequencing offers the advantage of better mappability and long-range phasing, which results in substantial improvements in germline SV detection. However, current long-read SV detection methods do not generalize well to the analysis of somatic SVs in tumor genomes with complex rearrangements, heterogeneity, and aneuploidy. Here, we present Severus: a method for the accurate detection of different types of somatic SVs using a phased breakpoint graph approach. To benchmark various short- and long-read SV detection methods, we sequenced five tumor/normal cell line pairs with Illumina, Nanopore, and PacBio sequencing platforms; on this benchmark Severus showed the highest F1 scores (harmonic mean of the precision and recall) as compared to long-read and short-read methods. We then applied Severus to three clinical cases of pediatric cancer, demonstrating concordance with known genetic findings as well as revealing clinically relevant cryptic rearrangements missed by standard genomic panels.

10.
Bioinform Adv ; 3(1): vbad062, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416509

RESUMO

Summary: RNA sequencing (RNA-seq) can be applied to diverse tasks including quantifying gene expression, discovering quantitative trait loci and identifying gene fusion events. Although RNA-seq can detect germline variants, the complexities of variable transcript abundance, target capture and amplification introduce challenging sources of error. Here, we extend DeepVariant, a deep-learning-based variant caller, to learn and account for the unique challenges presented by RNA-seq data. Our DeepVariant RNA-seq model produces highly accurate variant calls from RNA-sequencing data, and outperforms existing approaches such as Platypus and GATK. We examine factors that influence accuracy, how our model addresses RNA editing events and how additional thresholding can be used to facilitate our models' use in a production pipeline. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

11.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745389

RESUMO

Long-read sequencing technology has enabled variant detection in difficult-to-map regions of the genome and enabled rapid genetic diagnosis in clinical settings. Rapidly evolving third-generation sequencing platforms like Pacific Biosciences (PacBio) and Oxford nanopore technologies (ONT) are introducing newer platforms and data types. It has been demonstrated that variant calling methods based on deep neural networks can use local haplotyping information with long-reads to improve the genotyping accuracy. However, using local haplotype information creates an overhead as variant calling needs to be performed multiple times which ultimately makes it difficult to extend to new data types and platforms as they get introduced. In this work, we have developed a local haplotype approximate method that enables state-of-the-art variant calling performance with multiple sequencing platforms including PacBio Revio system, ONT R10.4 simplex and duplex data. This addition of local haplotype approximation makes DeepVariant a universal variant calling solution for long-read sequencing platforms.

12.
bioRxiv ; 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38168361

RESUMO

Pangenomes, by including genetic diversity, should reduce reference bias by better representing new samples compared to them. Yet when comparing a new sample to a pangenome, variants in the pangenome that are not part of the sample can be misleading, for example, causing false read mappings. These irrelevant variants are generally rarer in terms of allele frequency, and have previously been dealt with using allele frequency filters. However, this is a blunt heuristic that both fails to remove some irrelevant variants and removes many relevant variants. We propose a new approach, inspired by local ancestry inference methods, that imputes a personalized pangenome subgraph based on sampling local haplotypes according to k-mer counts in the reads. Our approach is tailored for the Giraffe short read aligner, as the indexes it needs for read mapping can be built quickly. We compare the accuracy of our approach to state-of-the-art methods using graphs from the Human Pangenome Reference Consortium. The resulting personalized pangenome pipelines provide faster pangenome read mapping than comparable pipelines that use a linear reference, reduce small variant genotyping errors by 4x relative to the Genome Analysis Toolkit (GATK) best-practice pipeline, and for the first time make short-read structural variant genotyping competitive with long-read discovery methods.

13.
Nat Biotechnol ; 41(2): 232-238, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36050551

RESUMO

Circular consensus sequencing with Pacific Biosciences (PacBio) technology generates long (10-25 kilobases), accurate 'HiFi' reads by combining serial observations of a DNA molecule into a consensus sequence. The standard approach to consensus generation, pbccs, uses a hidden Markov model. We introduce DeepConsensus, which uses an alignment-based loss to train a gap-aware transformer-encoder for sequence correction. Compared to pbccs, DeepConsensus reduces read errors by 42%. This increases the yield of PacBio HiFi reads at Q20 by 9%, at Q30 by 27% and at Q40 by 90%. With two SMRT Cells of HG003, reads from DeepConsensus improve hifiasm assembly contiguity (NG50 4.9 megabases (Mb) to 17.2 Mb), increase gene completeness (94% to 97%), reduce the false gene duplication rate (1.1% to 0.5%), improve assembly base accuracy (Q43 to Q45) and reduce variant-calling errors by 24%. DeepConsensus models could be trained to the general problem of analyzing the alignment of other types of sequences, such as unique molecular identifiers or genome assemblies.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
14.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077089

RESUMO

Apes possess two sex chromosomes-the male-specific Y and the X shared by males and females. The Y chromosome is crucial for male reproduction, with deletions linked to infertility. The X chromosome carries genes vital for reproduction and cognition. Variation in mating patterns and brain function among great apes suggests corresponding differences in their sex chromosome structure and evolution. However, due to their highly repetitive nature and incomplete reference assemblies, ape sex chromosomes have been challenging to study. Here, using the state-of-the-art experimental and computational methods developed for the telomere-to-telomere (T2T) human genome, we produced gapless, complete assemblies of the X and Y chromosomes for five great apes (chimpanzee, bonobo, gorilla, Bornean and Sumatran orangutans) and a lesser ape, the siamang gibbon. These assemblies completely resolved ampliconic, palindromic, and satellite sequences, including the entire centromeres, allowing us to untangle the intricacies of ape sex chromosome evolution. We found that, compared to the X, ape Y chromosomes vary greatly in size and have low alignability and high levels of structural rearrangements. This divergence on the Y arises from the accumulation of lineage-specific ampliconic regions and palindromes (which are shared more broadly among species on the X) and from the abundance of transposable elements and satellites (which have a lower representation on the X). Our analysis of Y chromosome genes revealed lineage-specific expansions of multi-copy gene families and signatures of purifying selection. In summary, the Y exhibits dynamic evolution, while the X is more stable. Finally, mapping short-read sequencing data from >100 great ape individuals revealed the patterns of diversity and selection on their sex chromosomes, demonstrating the utility of these reference assemblies for studies of great ape evolution. These complete sex chromosome assemblies are expected to further inform conservation genetics of nonhuman apes, all of which are endangered species.

15.
Nephrol Ther ; 18(6): 498-505, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36127259

RESUMO

BACKGROUND: Chronic kidney disease-associated pruritus is a common symptom for patients with end-stage renal disease on hemodialysis; however, its pathogenesis remains poorly understood. Chronic kidney disease-associated pruritus has been reported to be associated with skin hydration or barrier. Thus, an interaction or association may be observed between chronic kidney disease-associated pruritus, skin hydration, and skin barrier. PURPOSE: This study aimed to investigate the association between chronic kidney disease-associated pruritus, skin hydration, and skin barrier in patients with hemodialysis. METHODS: This cross-sectional study was conducted between November 2018 and February 2019. It included 162 patients undergoing maintenance hemodialysis for at least 6 months. Data were collected using the 5-D Itch Scale. Skin hydration and skin barrier were measured according to stratum corneum hydration and transepidermal water loss. RESULTS: Pruritus occurred in 42% of patients with hemodialysis. The mean 5-D Itch Scale severity was 10.91±4.5. Pearson correlation analysis revealed that pruritus significantly correlated with moisture level (r=0.191; P=0.01), stratum corneum hydration (r=0.191; P=0.01), barrier strength (r=-0.162; P=0.04), and transepidermal water loss (r=0.162; P=0.04). CONCLUSION: Chronic kidney disease-associated pruritus remains a serious problem in patients undergoing hemodialysis, and stratum corneum hydration and transepidermal water loss are among its causes. This study illustrates the importance of skin hydration and barrier and sensitization to chronic kidney disease-associated pruritus. Therefore, the possible risk factors of chronic kidney disease-associated pruritus must be monitored closely in patients at risk.


Assuntos
Falência Renal Crônica , Diálise Renal , Humanos , Projetos Piloto , Estudos Transversais , Diálise Renal/efeitos adversos , Prurido/complicações , Falência Renal Crônica/complicações , Falência Renal Crônica/terapia , Água
16.
Sci Rep ; 12(1): 1809, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110657

RESUMO

While next-generation sequencing (NGS) has transformed genetic testing, it generates large quantities of noisy data that require a significant amount of bioinformatics to generate useful interpretation. The accuracy of variant calling is therefore critical. Although GATK HaplotypeCaller is a widely used tool for this purpose, newer methods such as DeepVariant have shown higher accuracy in assessments of gold-standard samples for whole-genome sequencing (WGS) and whole-exome sequencing (WES), but a side-by-side comparison on clinical samples has not been performed. Trio WES was used to compare GATK (4.1.2.0) HaplotypeCaller and DeepVariant (v0.8.0). The performance of the two pipelines was evaluated according to the Mendelian error rate, transition-to-transversion (Ti/Tv) ratio, concordance rate, and pathological variant detection rate. Data from 80 trios were analyzed. The Mendelian error rate of the 77 biological trios calculated from the data by DeepVariant (3.09 ± 0.83%) was lower than that calculated from the data by GATK (5.25 ± 0.91%) (p < 0.001). DeepVariant also yielded a higher Ti/Tv ratio (2.38 ± 0.02) than GATK (2.04 ± 0.07) (p < 0.001), suggesting that DeepVariant proportionally called more true positives. The concordance rate between the 2 pipelines was 88.73%. Sixty-three disease-causing variants were detected in the 80 trios. Among them, DeepVariant detected 62 variants, and GATK detected 61 variants. The one variant called by DeepVariant but not GATK HaplotypeCaller might have been missed by GATK HaplotypeCaller due to low coverage. OTC exon 2 (139 bp) deletion was not detected by either method. Mendelian error rate calculation is an effective way to evaluate variant callers. By this method, DeepVariant outperformed GATK, while the two pipelines performed equally in other parameters.


Assuntos
Biologia Computacional/métodos , Sequenciamento do Exoma , Doenças Genéticas Inatas/diagnóstico , Variação Genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Software , Estudos de Casos e Controles , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Hereditariedade , Humanos , Linhagem , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
17.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347328

RESUMO

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Sequenciamento Completo do Genoma/métodos
18.
Cell Genom ; 2(5)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35720974

RESUMO

The precisionFDA Truth Challenge V2 aimed to assess the state of the art of variant calling in challenging genomic regions. Starting with FASTQs, 20 challenge participants applied their variant-calling pipelines and submitted 64 variant call sets for one or more sequencing technologies (Illumina, PacBio HiFi, and Oxford Nanopore Technologies). Submissions were evaluated following best practices for benchmarking small variants with updated Genome in a Bottle benchmark sets and genome stratifications. Challenge submissions included numerous innovative methods, with graph-based and machine learning methods scoring best for short-read and long-read datasets, respectively. With machine learning approaches, combining multiple sequencing technologies performed particularly well. Recent developments in sequencing and variant calling have enabled benchmarking variants in challenging genomic regions, paving the way for the identification of previously unknown clinically relevant variants.

19.
Commun Biol ; 4(1): 1269, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741098

RESUMO

There is currently a dearth of accessible whole genome sequencing (WGS) data for individuals residing in the Americas with Sub-Saharan African ancestry. We generated whole genome sequencing data at intermediate (15×) coverage for 2,294 individuals with large amounts of Sub-Saharan African ancestry, predominantly Atlantic African admixed with varying amounts of European and American ancestry. We performed extensive comparisons of variant callers, phasing algorithms, and variant filtration on these data to construct a high quality imputation panel containing data from 2,269 unrelated individuals. With the exception of the TOPMed imputation server (which notably cannot be downloaded), our panel substantially outperformed other available panels when imputing African American individuals. The raw sequencing data, variant calls and imputation panel for this cohort are all freely available via dbGaP and should prove an invaluable resource for further study of admixed African genetics.


Assuntos
Genoma Humano , Genótipo , Adulto , Negro ou Afro-Americano , Idoso , Idoso de 80 Anos ou mais , Humanos , Pessoa de Meia-Idade , Estados Unidos , Sequenciamento Completo do Genoma , Adulto Jovem
20.
Science ; 374(6574): abg8871, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34914532

RESUMO

We introduce Giraffe, a pangenome short-read mapper that can efficiently map to a collection of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands of human genomes at a speed comparable to that of standard methods mapping to a single reference genome. The increased mapping accuracy enables downstream improvements in genome-wide genotyping pipelines for both small variants and larger structural variants. We used Giraffe to genotype 167,000 structural variants, discovered in long-read studies, in 5202 diverse human genomes that were sequenced using short reads. We conclude that pangenomics facilitates a more comprehensive characterization of variation and, as a result, has the potential to improve many genomic analyses.


Assuntos
Variação Genética , Genoma Humano , Genômica/métodos , Técnicas de Genotipagem , Algoritmos , Alelos , Biologia Computacional , Genoma Fúngico , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Saccharomyces/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA