Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Hum Genet ; 111(5): 841-862, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38593811

RESUMO

RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.


Assuntos
Transdiferenciação Celular , Fibroblastos , Neurônios , Análise de Sequência de RNA , Humanos , Transdiferenciação Celular/genética , Fibroblastos/metabolismo , Fibroblastos/citologia , Análise de Sequência de RNA/métodos , Neurônios/metabolismo , Neurônios/citologia , Transcriptoma , Reprodutibilidade dos Testes , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/diagnóstico , RNA-Seq/métodos , Feminino , Masculino
2.
Am J Hum Genet ; 110(1): 120-145, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36528028

RESUMO

Eukaryotic initiation factor-4A2 (EIF4A2) is an ATP-dependent RNA helicase and a member of the DEAD-box protein family that recognizes the 5' cap structure of mRNAs, allows mRNA to bind to the ribosome, and plays an important role in microRNA-regulated gene repression. Here, we report on 15 individuals from 14 families presenting with global developmental delay, intellectual disability, hypotonia, epilepsy, and structural brain anomalies, all of whom have extremely rare de novo mono-allelic or inherited bi-allelic variants in EIF4A2. Neurodegeneration was predominantly reported in individuals with bi-allelic variants. Molecular modeling predicts these variants would perturb structural interactions in key protein domains. To determine the pathogenicity of the EIF4A2 variants in vivo, we examined the mono-allelic variants in Drosophila melanogaster (fruit fly) and identified variant-specific behavioral and developmental defects. The fruit fly homolog of EIF4A2 is eIF4A, a negative regulator of decapentaplegic (dpp) signaling that regulates embryo patterning, eye and wing morphogenesis, and stem cell identity determination. Our loss-of-function (LOF) rescue assay demonstrated a pupal lethality phenotype induced by loss of eIF4A, which was fully rescued with human EIF4A2 wild-type (WT) cDNA expression. In comparison, the EIF4A2 variant cDNAs failed or incompletely rescued the lethality. Overall, our findings reveal that EIF4A2 variants cause a genetic neurodevelopmental syndrome with both LOF and gain of function as underlying mechanisms.


Assuntos
Proteínas de Drosophila , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Animais , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Epilepsia/genética , Fator de Iniciação 4A em Eucariotos/genética , Deficiência Intelectual/genética , Hipotonia Muscular/genética , Transtornos do Neurodesenvolvimento/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Am J Hum Genet ; 106(5): 717-725, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32330417

RESUMO

We identified three unrelated individuals with de novo missense variants in CDK19, encoding a cyclin-dependent kinase protein family member that predominantly regulates gene transcription. These individuals presented with hypotonia, global developmental delay, epileptic encephalopathy, and dysmorphic features. CDK19 is conserved between vertebrate and invertebrate model organisms, but currently abnormalities in CDK19 are not known to be associated with a human disorder. Loss of Cdk8, the fly homolog of CDK19, causes larval lethality, which is suppressed by expression of human CDK19 reference cDNA. In contrast, the CDK19 p.Tyr32His and p.Thr196Ala variants identified in the affected individuals fail to rescue the loss of Cdk8 and behave as null alleles. Additionally, neuronal RNAi-mediated knockdown of Cdk8 in flies results in semi-lethality. The few eclosing flies exhibit severe seizures and a reduced lifespan. Both phenotypes are fully suppressed by moderate expression of the CDK19 reference cDNA but not by expression of the two variants. Finally, loss of Cdk8 causes an obvious loss of boutons and synapses at larval neuromuscular junctions (NMJs). Together, our findings demonstrate that human CDK19 fully replaces the function of Cdk8 in the fly, the human disease-associated CDK19 variants behave as strong loss-of-function variants, and deleterious CDK19 variants underlie a syndromic neurodevelopmental disorder.


Assuntos
Encefalopatias/genética , Quinases Ciclina-Dependentes/genética , Epilepsia Generalizada/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto/genética , Adulto , Sequência de Aminoácidos , Animais , Pré-Escolar , Quinase 8 Dependente de Ciclina/deficiência , Quinase 8 Dependente de Ciclina/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Junção Neuromuscular , Doenças Raras/genética , Convulsões/genética , Síndrome , Adulto Jovem
4.
Am J Hum Genet ; 106(4): 570-583, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32197074

RESUMO

EIF2AK1 and EIF2AK2 encode members of the eukaryotic translation initiation factor 2 alpha kinase (EIF2AK) family that inhibits protein synthesis in response to physiologic stress conditions. EIF2AK2 is also involved in innate immune response and the regulation of signal transduction, apoptosis, cell proliferation, and differentiation. Despite these findings, human disorders associated with deleterious variants in EIF2AK1 and EIF2AK2 have not been reported. Here, we describe the identification of nine unrelated individuals with heterozygous de novo missense variants in EIF2AK1 (1/9) or EIF2AK2 (8/9). Features seen in these nine individuals include white matter alterations (9/9), developmental delay (9/9), impaired language (9/9), cognitive impairment (8/9), ataxia (6/9), dysarthria in probands with verbal ability (6/9), hypotonia (7/9), hypertonia (6/9), and involuntary movements (3/9). Individuals with EIF2AK2 variants also exhibit neurological regression in the setting of febrile illness or infection. We use mammalian cell lines and proband-derived fibroblasts to further confirm the pathogenicity of variants in these genes and found reduced kinase activity. EIF2AKs phosphorylate eukaryotic translation initiation factor 2 subunit 1 (EIF2S1, also known as EIF2α), which then inhibits EIF2B activity. Deleterious variants in genes encoding EIF2B proteins cause childhood ataxia with central nervous system hypomyelination/vanishing white matter (CACH/VWM), a leukodystrophy characterized by neurologic regression in the setting of febrile illness and other stressors. Our findings indicate that EIF2AK2 missense variants cause a neurodevelopmental syndrome that may share phenotypic and pathogenic mechanisms with CACH/VWM.


Assuntos
Deficiências do Desenvolvimento/genética , Variação Genética/genética , Leucoencefalopatias/genética , Malformações do Sistema Nervoso/genética , eIF-2 Quinase/genética , Adolescente , Ataxia/genética , Criança , Pré-Escolar , Feminino , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Humanos , Lactente , Masculino , Substância Branca/patologia
5.
Ann Neurol ; 92(1): 138-153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35340043

RESUMO

OBJECTIVE: Collier/Olf/EBF (COE) transcription factors have distinct expression patterns in the developing and mature nervous system. To date, a neurological disease association has been conclusively established for only the Early B-cell Factor-3 (EBF3) COE family member through the identification of heterozygous loss-of-function variants in individuals with autism spectrum/neurodevelopmental disorders (NDD). Here, we identify a symptom severity risk association with missense variants primarily disrupting the zinc finger domain (ZNF) in EBF3-related NDD. METHODS: A phenotypic assessment of 41 individuals was combined with a literature meta-analysis for a total of 83 individuals diagnosed with EBF3-related NDD. Quantitative diagnostic phenotypic and symptom severity scales were developed to compare EBF3 variant type and location to identify genotype-phenotype correlations. To stratify the effects of EBF3 variants disrupting either the DNA-binding domain (DBD) or the ZNF, we used in vivo fruit fly UAS-GAL4 expression and in vitro luciferase assays. RESULTS: We show that patient symptom severity correlates with EBF3 missense variants perturbing the ZNF, which is a key protein domain required for stabilizing the interaction between EBF3 and the target DNA sequence. We found that ZNF-associated variants failed to restore viability in the fruit fly and impaired transcriptional activation. However, the recurrent variant EBF3 p.Arg209Trp in the DBD is capable of partially rescuing viability in the fly and preserved transcriptional activation. INTERPRETATION: We describe a symptom severity risk association with ZNF perturbations and EBF3 loss-of-function in the largest reported cohort to date of EBF3-related NDD patients. This analysis should have potential predictive clinical value for newly identified patients with EBF3 gene variants. ANN NEUROL 2022;92:138-153.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Fatores de Transcrição , Dedos de Zinco , Transtorno do Espectro Autista/genética , Humanos , Mutação de Sentido Incorreto/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Dedos de Zinco/genética
6.
Am J Med Genet A ; 191(6): 1619-1625, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36905087

RESUMO

The p-21-activated kinase 1 (PAK1) protein, encoded by the PAK1 gene, is an evolutionarily conserved serine/threonine-protein kinase that regulates key cellular developmental processes. To date, seven de novo PAK1 variants have been reported to cause the Intellectual Developmental Disorder with Macrocephaly, Seizures, and Speech Delay (IDDMSSD). In addition to the namesake features, other common characteristics include structural brain anomalies, delayed development, hypotonia, and dysmorphic features. Here, we report a de novo PAK1 NM_002576.5: c.1409 T > A variant (p.Leu470Gln) identified by trio genome sequencing (GS) in a 13-year-old boy with postnatal macrocephaly, obstructive hydrocephalus, medically refractory epilepsy, spastic quadriplegia, white matter hyperintensities, profound developmental disabilities, and a horseshoe kidney. This is the first recurrently affected residue identified in the protein kinase domain. Combined assessment of the eight pathogenic PAK1 missense variants reveal that the variants cluster in either the protein kinase or autoregulatory domains. Although interpretation of the phenotypic spectrum is limited by the sample size, neuroanatomical alterations were found more often in individuals with PAK1 variants in the autoregulatory domain. In contrast, non-neurological comorbidities were found more often in individuals with PAK1 variants in the protein kinase domain. Together, these findings expand the clinical spectrum of PAK1-associated IDDMSSD and reveal potential correlations with the affected protein domains.


Assuntos
Epilepsia , Hidrocefalia , Deficiência Intelectual , Megalencefalia , Masculino , Humanos , Adolescente , Domínios Proteicos , Proteínas Quinases , Epilepsia/diagnóstico , Epilepsia/genética , Megalencefalia/diagnóstico , Megalencefalia/genética , Deficiência Intelectual/genética , Hidrocefalia/diagnóstico , Hidrocefalia/genética , Quadriplegia/diagnóstico , Quadriplegia/genética , Quinases Ativadas por p21/genética , Quinases Ativadas por p21/química
7.
Am J Med Genet A ; 188(6): 1868-1874, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35194938

RESUMO

Prune exopolyphosphatase-1 (PRUNE1) encodes a member of the aspartic acid-histidine-histidine (DHH) phosphodiesterase superfamily that regulates cell migration and proliferation during brain development. In 2015, biallelic PRUNE1 loss-of-function variants were identified to cause the neurodevelopmental disorder with microcephaly, hypotonia, and variable brain abnormalities (NMIHBA, OMIM#617481). NMIHBA is characterized by the namesake features and structural brain anomalies including thinning of the corpus callosum, cerebral and cerebellar atrophy, and delayed myelination. To date, 47 individuals have been reported in the literature, but the phenotypic spectrum of PRUNE1-related disorders and their causative variants remains to be characterized fully. Here, we report a novel homozygous PRUNE1 NM_021222.2:c.933G>A synonymous variant identified in a 6-year-old boy with intellectual and developmental disabilities, hypotonia, and spastic diplegia, but with the absence of microcephaly, brain anomalies, or seizures. Fibroblast RNA sequencing revealed that the PRUNE1 NM_021222.1:c.933G>A variant resulted in an in-frame skipping of the penultimate exon 7, removing 53 amino acids from an important protein domain. This case represents the first synonymous variant and the third pathogenic variant known to date affecting the DHH-associated domain (DHHA2 domain). These findings extend the genotypic and phenotypic spectrums in PRUNE1-related disorders and highlight the importance of considering synonymous splice site variants in atypical presentations.


Assuntos
Microcefalia , Criança , Éxons/genética , Histidina/genética , Humanos , Masculino , Microcefalia/diagnóstico , Microcefalia/genética , Hipotonia Muscular/genética , Linhagem , Monoéster Fosfórico Hidrolases/genética
8.
Am J Med Genet A ; 188(12): 3516-3524, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35934918

RESUMO

Cyclin-dependent kinase-like 5 (CDKL5) deficiency disorder (CDD) is caused by heterozygous or hemizygous variants in CDKL5 and is characterized by refractory epilepsy, cognitive and motor impairments, and cerebral visual impairment. CDKL5 has multiple transcripts, of which the longest transcripts, NM_003159 and NM_001037343, have been used historically in clinical laboratory testing. However, the transcript NM_001323289 is the most highly expressed in brain and contains 170 nucleotides at the 3' end of its last exon that are noncoding in other transcripts. Two truncating variants in this region have been reported in association with a CDD phenotype. To clarify the significance and range of phenotypes associated with late truncating variants in this region of the predominant transcript in the brain, we report detailed information on two individuals, updated clinical information on a third individual, and a summary of published and unpublished individuals reported in ClinVar. The two new individuals (one male and one female) each had a relatively mild clinical presentation including periods of pharmaco-responsive epilepsy, independent walking and limited purposeful communication skills. A previously reported male continued to have a severe phenotype. Overall, variants in this region demonstrate a range of clinical severity consistent with reports in CDD but with the potential for milder presentation.


Assuntos
Síndromes Epilépticas , Espasmos Infantis , Masculino , Feminino , Humanos , Espasmos Infantis/diagnóstico , Espasmos Infantis/genética , Espasmos Infantis/complicações , Síndromes Epilépticas/genética , Fenótipo , Encéfalo , Proteínas Serina-Treonina Quinases/genética
10.
Am J Hum Genet ; 100(6): 843-853, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28502612

RESUMO

One major challenge encountered with interpreting human genetic variants is the limited understanding of the functional impact of genetic alterations on biological processes. Furthermore, there remains an unmet demand for an efficient survey of the wealth of information on human homologs in model organisms across numerous databases. To efficiently assess the large volume of publically available information, it is important to provide a concise summary of the most relevant information in a rapid user-friendly format. To this end, we created MARRVEL (model organism aggregated resources for rare variant exploration). MARRVEL is a publicly available website that integrates information from six human genetic databases and seven model organism databases. For any given variant or gene, MARRVEL displays information from OMIM, ExAC, ClinVar, Geno2MP, DGV, and DECIPHER. Importantly, it curates model organism-specific databases to concurrently display a concise summary regarding the human gene homologs in budding and fission yeast, worm, fly, fish, mouse, and rat on a single webpage. Experiment-based information on tissue expression, protein subcellular localization, biological process, and molecular function for the human gene and homologs in the seven model organisms are arranged into a concise output. Hence, rather than visiting multiple separate databases for variant and gene analysis, users can obtain important information by searching once through MARRVEL. Altogether, MARRVEL dramatically improves efficiency and accessibility to data collection and facilitates analysis of human genes and variants by cross-disciplinary integration of 18 million records available in public databases to facilitate clinical diagnosis and basic research.


Assuntos
Variação Genética , Genoma Humano , Anotação de Sequência Molecular , Software , Bases de Dados Genéticas , Humanos
11.
Am J Hum Genet ; 100(1): 128-137, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28017372

RESUMO

Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations.


Assuntos
Mutação , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Anormalidades Múltiplas/genética , Ataxia/genética , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Feminino , Genitália/anormalidades , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Masculino , Hipotonia Muscular/genética , Distúrbios da Fala/genética , Síndrome , Dedos de Zinco/genética
13.
Semin Cell Dev Biol ; 70: 49-57, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28579453

RESUMO

Today, biomedical science is equipped with an impressive array of technologies and genetic resources that bolster our basic understanding of fundamental biology and enhance the practice of modern medicine by providing clinicians with a diverse toolkit to diagnose, prognosticate, and treat a plethora of conditions. Many significant advances in our understanding of disease mechanisms and therapeutic interventions have arisen from fruitful dialogues between clinicians and biomedical research scientists. However, the increasingly specialized scientific and medical disciplines, globalization of science and technology, and complex datasets often hinder the development of effective interdisciplinary collaborations between clinical medicine and biomedical research. The goal of this review is to provide examples of diverse strategies to enhance communication and collaboration across diverse disciplines. First, we discuss examples of efforts to foster interdisciplinary collaborations at institutional and multi-institutional levels. Second, we explore resources and tools for clinicians and research scientists to facilitate effective bi-directional dialogues. Third, we use our experiences in neurobiology and human genetics to highlight how communication between clinical medicine and biomedical research lead to effective implementation of cross-species model organism approaches to uncover the biological underpinnings of health and disease.


Assuntos
Pesquisa Biomédica/métodos , Drosophila/genética , Comunicação Interdisciplinar , Doenças Neurodegenerativas/terapia , Pesquisa Translacional Biomédica/métodos , Peixe-Zebra/genética , Animais , Pesquisa Biomédica/economia , Relações Comunidade-Instituição , Modelos Animais de Doenças , Drosophila/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Participação do Paciente/estatística & dados numéricos , Rede Social , Pesquisa Translacional Biomédica/economia , Peixe-Zebra/metabolismo
14.
Genet Med ; 21(12): 2755-2764, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31263215

RESUMO

PURPOSE: Haploinsufficiency of DYRK1A causes a recognizable clinical syndrome. The goal of this paper is to investigate congenital anomalies of the kidney and urinary tract (CAKUT) and genital defects (GD) in patients with DYRK1A variants. METHODS: A large database of clinical exome sequencing (ES) was queried for de novo DYRK1A variants and CAKUT/GD phenotypes were characterized. Xenopus laevis (frog) was chosen as a model organism to assess Dyrk1a's role in renal development. RESULTS: Phenotypic details and variants of 19 patients were compiled after an initial observation that one patient with a de novo pathogenic variant in DYRK1A had GD. CAKUT/GD data were available from 15 patients, 11 of whom presented with CAKUT/GD. Studies in Xenopus embryos demonstrated that knockdown of Dyrk1a, which is expressed in forming nephrons, disrupts the development of segments of embryonic nephrons, which ultimately give rise to the entire genitourinary (GU) tract. These defects could be rescued by coinjecting wild-type human DYRK1A RNA, but not with DYRK1AR205* or DYRK1AL245R RNA. CONCLUSION: Evidence supports routine GU screening of all individuals with de novo DYRK1A pathogenic variants to ensure optimized clinical management. Collectively, the reported clinical data and loss-of-function studies in Xenopus substantiate a novel role for DYRK1A in GU development.


Assuntos
Deficiência Intelectual/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Anormalidades Urogenitais/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Bases de Dados Genéticas , Modelos Animais de Doenças , Exoma/genética , Feminino , Haploinsuficiência/genética , Humanos , Deficiência Intelectual/complicações , Rim/anormalidades , Rim/embriologia , Masculino , Néfrons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Sistema Urinário/embriologia , Sistema Urinário/metabolismo , Sequenciamento do Exoma/métodos , Xenopus laevis/genética , Xenopus laevis/metabolismo , Adulto Jovem , Quinases Dyrk
15.
Am J Med Genet A ; 179(3): 475-479, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30569621

RESUMO

Genetic alterations leading to overactivation of mammalian target of rapamycin (mTOR) signaling result in brain overgrowth syndromes such as focal cortical dysplasia (FCD) and megalencephaly. Megalencephaly with cutis tri-color of the Blaschko-linear type pigmentary mosaicism and intellectual disability is a rare neurodevelopmental disorder attributed to the recurrent mosaic c.5930C > T (p.Thr1977Ile) MTOR variant. This variant was previously reported at low to intermediate levels of mosaicism in the peripheral blood of three unrelated individuals with consistent clinical findings. We report a fourth case of a 3-year-old female presenting with megalencephaly, obstructive hydrocephalus due to cerebral aqueductal stenosis, asymmetric polymicrogyria, dysgenesis of the corpus callosum, hypotonia, developmental delay, and cutaneous pigmentary mosaicism. Oligonucleotide and SNP chromosomal microarray (CMA), karyotype, and trio whole exome sequencing (WES) in the peripheral blood, as well as a targeted gene variant panel from fibroblasts derived from hyperpigmented and non-hyperpigmented skin did not detect any abnormalities in MTOR or other genes associated with brain overgrowth syndromes. Unlike the previously reported cases, the de novo c.5930C > T (p.Thr1977Ile) MTOR variant was detected at 32% mosaicism in our patient only after WES was performed on fibroblast-derived DNA from the hyperpigmented skin. This case demonstrates the tissue variability in mosaic expression of the recurrent p.Thr1977Ile MTOR variant, emphasizes the need for skin biopsies in the genetic evaluation of patients with skin pigmentary mosaicism, and expands the clinical phenotype associated with this pathogenic MTOR variant.


Assuntos
Malformações do Desenvolvimento Cortical/diagnóstico , Malformações do Desenvolvimento Cortical/genética , Megalencefalia/diagnóstico , Megalencefalia/genética , Mutação , Transtornos da Pigmentação/diagnóstico , Transtornos da Pigmentação/genética , Serina-Treonina Quinases TOR/genética , Alelos , Substituição de Aminoácidos , Pré-Escolar , Feminino , Genótipo , Humanos , Imageamento por Ressonância Magnética , Mosaicismo , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
Am J Med Genet A ; 173(10): 2680-2689, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28815871

RESUMO

DNA alterations in the 1q43-q44 region are associated with syndromic neurodevelopmental disorders characterized by global developmental delay, intellectual disability, dysmorphic features, microcephaly, seizures, and agenesis of the corpus callosum. HNRNPU is located within the 1q43-q44 region and mutations in the gene have been reported in patients with early infantile epileptic encephalopathy. Here, we report on the clinical presentation of four patients with de novo heterozygous HNRNPU loss-of-function mutations detected by clinical whole exome sequencing: c.651_660del (p.Gly218Alafs*118), c.1089G>A (p.Trp363*), c.1714C>T (p.Arg572*), and c.2270_2271del (p.Pro757Argfs*7). All patients shared similar clinical features as previously reported including seizures, global developmental delay, intellectual disability, variable neurologic regression, behavior issues, and dysmorphic facial features. Features including heart defects and kidney abnormalities were not reported in our patients. These findings expands the clinical spectrum of HNRNPU-related disorder and shows that HNRNPU contributes to a subset of the clinical phenotypes associated with the contiguous 1q43-q44 deletion syndrome.


Assuntos
Deleção Cromossômica , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/genética , Transtornos do Neurodesenvolvimento/genética , Criança , Feminino , Haploinsuficiência , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/patologia , Linhagem , Fenótipo
17.
Nature ; 468(7321): 263-9, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21068835

RESUMO

Mutations in the X-linked MECP2 gene, which encodes the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2), cause Rett syndrome and several neurodevelopmental disorders including cognitive disorders, autism, juvenile-onset schizophrenia and encephalopathy with early lethality. Rett syndrome is characterized by apparently normal early development followed by regression, motor abnormalities, seizures and features of autism, especially stereotyped behaviours. The mechanisms mediating these features are poorly understood. Here we show that mice lacking Mecp2 from GABA (γ-aminobutyric acid)-releasing neurons recapitulate numerous Rett syndrome and autistic features, including repetitive behaviours. Loss of MeCP2 from a subset of forebrain GABAergic neurons also recapitulates many features of Rett syndrome. MeCP2-deficient GABAergic neurons show reduced inhibitory quantal size, consistent with a presynaptic reduction in glutamic acid decarboxylase 1 (Gad1) and glutamic acid decarboxylase 2 (Gad2) levels, and GABA immunoreactivity. These data demonstrate that MeCP2 is critical for normal function of GABA-releasing neurons and that subtle dysfunction of GABAergic neurons contributes to numerous neuropsychiatric phenotypes.


Assuntos
Transtorno Autístico/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/deficiência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Síndrome de Rett/fisiopatologia , Transdução de Sinais , Transtorno de Movimento Estereotipado/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/citologia , Comportamento Compulsivo/complicações , Comportamento Compulsivo/genética , Comportamento Compulsivo/fisiopatologia , Modelos Animais de Doenças , Eletroencefalografia , Genótipo , Glutamato Descarboxilase/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Proteínas de Homeodomínio/genética , Potenciais Pós-Sinápticos Inibidores , Potenciação de Longa Duração , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Camundongos Transgênicos , Inibição Neural , Plasticidade Neuronal , Neurônios/metabolismo , Fenótipo , Terminações Pré-Sinápticas/metabolismo , Transtornos Psicomotores/complicações , Transtornos Psicomotores/genética , Transtornos Psicomotores/fisiopatologia , Reflexo de Sobressalto/genética , Respiração , Síndrome de Rett/complicações , Síndrome de Rett/genética , Síndrome de Rett/patologia , Comportamento Autodestrutivo/complicações , Comportamento Autodestrutivo/genética , Comportamento Autodestrutivo/fisiopatologia , Transtorno de Movimento Estereotipado/complicações , Transtorno de Movimento Estereotipado/genética , Transtorno de Movimento Estereotipado/patologia , Taxa de Sobrevida , Transmissão Sináptica , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
18.
J Neurosci ; 34(3): 855-68, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24431444

RESUMO

Neural circuits are composed of mainly glutamatergic and GABAergic neurons, which communicate through synaptic connections. Many factors instruct the formation and function of these synapses; however, it is difficult to dissect the contribution of intrinsic cell programs from that of extrinsic environmental effects in an intact network. Here, we perform paired recordings from two-neuron microculture preparations of mouse hippocampal glutamatergic and GABAergic neurons to investigate how synaptic input and output of these two principal cells develop. In our reduced preparation, we found that glutamatergic neurons showed no change in synaptic output or input regardless of partner neuron cell type or neuronal activity level. In contrast, we found that glutamatergic input caused the GABAergic neuron to modify its output by way of an increase in synapse formation and a decrease in synaptic release efficiency. These findings are consistent with aspects of GABAergic synapse maturation observed in many brain regions. In addition, changes in GABAergic output are cell wide and not target-cell specific. We also found that glutamatergic neuronal activity determined the AMPA receptor properties of synapses on the partner GABAergic neuron. All modifications of GABAergic input and output required activity of the glutamatergic neuron. Because our system has reduced extrinsic factors, the changes we saw in the GABAergic neuron due to glutamatergic input may reflect initiation of maturation programs that underlie the formation and function of in vivo neural circuits.


Assuntos
Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/fisiologia , Rede Nervosa/crescimento & desenvolvimento , Neurogênese/fisiologia , Receptores de AMPA/fisiologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Hipocampo/crescimento & desenvolvimento , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/fisiologia , Transmissão Sináptica/fisiologia
19.
J Neurosci ; 33(50): 19518-33, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24336718

RESUMO

MECP2 duplication syndrome is a childhood neurological disorder characterized by intellectual disability, autism, motor abnormalities, and epilepsy. The disorder is caused by duplications spanning the gene encoding methyl-CpG-binding protein-2 (MeCP2), a protein involved in the modulation of chromatin and gene expression. MeCP2 is thought to play a role in maintaining the structural integrity of neuronal circuits. Loss of MeCP2 function causes Rett syndrome and results in abnormal dendritic spine morphology and decreased pyramidal dendritic arbor complexity and spine density. The consequences of MeCP2 overexpression on dendritic pathophysiology remain unclear. We used in vivo two-photon microscopy to characterize layer 5 pyramidal neuron spine turnover and dendritic arborization as a function of age in transgenic mice expressing the human MECP2 gene at twice the normal levels of MeCP2 (Tg1; Collins et al., 2004). We found that spine density in terminal dendritic branches is initially higher in young Tg1 mice but falls below control levels after postnatal week 12, approximately correlating with the onset of behavioral symptoms. Spontaneous spine turnover rates remain high in older Tg1 animals compared with controls, reflecting the persistence of an immature state. Both spine gain and loss rates are higher, with a net bias in favor of spine elimination. Apical dendritic arbors in both simple- and complex-tufted layer 5 Tg1 pyramidal neurons have more branches of higher order, indicating that MeCP2 overexpression induces dendritic overgrowth. P70S6K was hyperphosphorylated in Tg1 somatosensory cortex, suggesting that elevated mTOR signaling may underlie the observed increase in spine turnover and dendritic growth.


Assuntos
Dendritos/metabolismo , Espinhas Dendríticas/metabolismo , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Animais , Modelos Animais de Doenças , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Neurônios/metabolismo , Córtex Somatossensorial/metabolismo , Córtex Somatossensorial/fisiopatologia
20.
bioRxiv ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260399

RESUMO

RNA-binding proteins (RBPs) regulate translation and plasticity which are required for memory. RBP dysfunction has been linked to a range of neurological disorders where cognitive impairments are a key symptom. However, of the 2,000 RBPs in the human genome, many are uncharacterized with regards to neurological phenotypes. To address this, we used the model organism C. elegans to assess the role of 20 conserved RBPs in memory. We identified eight previously uncharacterized memory regulators, three of which are in the C. elegans Y-Box (CEY) RBP family. Of these, we determined that cey-1 is the closest ortholog to the mammalian Y-Box (YBX) RBPs. We found that CEY-1 is both necessary in the nervous system for memory ability and sufficient to increase memory. Leveraging human datasets, we found both copy number variation losses and single nucleotide variants in YBX1 and YBX3 in individuals with neurological symptoms. We identified one predicted deleterious YBX3 variant of unknown significance, p.Asn127Tyr, in two individuals with neurological symptoms. Introducing this variant into endogenous cey-1 locus caused memory deficits in the worm. We further generated two humanized worm lines expressing human YBX3 or YBX1 at the cey-1 locus to test evolutionary conservation of YBXs in memory and the potential functional significance of the p.Asn127Tyr variant. Both YBX1/3 can functionally replace cey-1, and introduction of p.Asn127Tyr into the humanized YBX3 locus caused memory deficits. Our study highlights the worm as a model to reveal memory regulators and identifies YBX dysfunction as a potential new source of rare neurological disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA