Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; : 107721, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39214307

RESUMO

Obesity has emerged as a major health risk on a global scale. Hinokiflavone (HF), a natural small molecule, extracted from plants like cypress, exhibits diverse chemical structures and low synthesis costs. Using high-fat diet (HFD)-induced obese mice models, we found that HF suppresses obesity by inducing apoptosis in adipose tissue. Adipocyte apoptosis helps maintain tissue health by removing aging, damaged, or excess cells in adipose tissue, which is crucial in preventing obesity and metabolic diseases. We found that HF can specifically bind to insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) to promote the stability of N6-methyladenosine (m6A) -modified Bim, inducing mitochondrial outer membrane permeabilization (MOMP). MOMP leads to Caspase9/3-mediated adipocyte mitochondrial apoptosis, alleviating obesity induced by a high-fat diet. The pro-apoptotic effect of HF offers a controlled means for weight loss. This study reveals the potential of small molecule HF in developing new therapeutic approaches in drug development and biomedical research.

2.
Int J Biol Macromol ; 272(Pt 1): 132728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825295

RESUMO

Intramuscular fat (IMF) content is mainly determined by intramuscular preadipocyte adipogenesis. Epigenetic modifications are known to have a regulatory effect on IMF. As N6-methyladenosine (m6A) is the most abundant epigenetic modification in eukaryotic RNAs. In the present study, we used m6A methylation and RNA sequencing (seq) to identify the m6A-modified RNAs associated with the adipogenic differentiation of intramuscular preadipocytes. Among them, the expression and m6A level of phosphorylase kinase subunit G1 (PHKG1) were found to be significantly changed during adipogenesis. Further studies revealed that knockdown of the methylase METTL3 decreased the m6A methylation of PHKG1 and led to a reduction in PHKG1. Moreover, knockdown of PHKG1 promoted adipogenic differentiation by upregulating the expression of adipogenic genes. In addition, we found that the IMF content in the longissimus thoracis (LT) of Bamei (BM) pigs was greater than that in Large White (LW) pigs, whereas the m6A and PHKG1 expression levels were lower in BM pigs. These findings indicate that the m6A level and expression of PHKG1 were significantly correlated with IMF content and meat quality. In conclusion, this study sheds light on the mechanism by which m6A modification regulates IMF deposition.


Assuntos
Adenosina , Adipócitos , Adipogenia , Animais , Adipócitos/metabolismo , Adipócitos/citologia , Metilação , Suínos , Adipogenia/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Fosforilase Quinase/genética , Fosforilase Quinase/metabolismo , Metabolismo dos Lipídeos/genética , Músculo Esquelético/metabolismo , Diferenciação Celular/genética
3.
Meat Sci ; 198: 109116, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36657261

RESUMO

Reducing backfat thickness (BFT), determined by subcutaneous fat deposition, is vital in Chinese developed pig breeds. The level of miR-503 in the backfat of Guanzhong Black pigs was found to be lower than that in Large White pigs, implying that miR-503 may be related to BFT. However, the effect and mechanism of miR-503 on adipogenic differentiation in subcutaneous preadipocytes remain unknown. Compared with Large White pigs, the BFT and body fat content of Guanzhong Black pigs were greater, but the level of miR-503 was lower in subcutaneous adipose tissue (SAT) at 180 days of age. Furthermore, miR-503 promoted preadipocyte proliferation by increasing the proportion of S-phase and EdU-positive cells. However, miR-503 inhibited preadipocyte differentiation by downregulating adipogenic gene expression. Mechanistically, miR-503 directly targeted musculoaponeurotic fibrosarcoma oncogene homolog K (MafK) in both proliferating and differentiating preadipocytes to repress adipogenesis. Our findings provide a novel miRNA biomarker for reducing pig BFT levels to improve carcass quality.


Assuntos
Adipogenia , MicroRNAs , Animais , Adipogenia/genética , Tecido Adiposo , Diferenciação Celular/genética , MicroRNAs/genética , Gordura Subcutânea/metabolismo , Suínos/genética , Fator de Transcrição MafK/metabolismo
4.
Redox Biol ; 65: 102829, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527604

RESUMO

Gut health is important for nutrition absorption, reproduction, and lactation in perinatal and early weaned mammals. Although melatonin functions in maintaining circadian rhythms and preventing obesity, neurodegenerative diseases, and viral infections, its impact on the gut microbiome and its function in mediating gut health through gut microbiota remain largely unexplored. In the present study, the microbiome of rats was monitoring after fecal microbiota transplantation (FMT) and foster care (FC). The results showed that FMT and FC increased intestinal villus height/crypt depth in perinatal rats. Mechanistically, the melatonin-mediated remodeling of gut microbiota inhibited oxidative stress, which led to attenuation of autophagy and inflammation. In addition, FMT and FC encouraged the growth of more beneficial intestinal bacteria, such as Allobaculum, Bifidobacterium, and Faecalibaculum, which produce more short-chain fatty acids to strengthen intestinal anti-oxidation. These findings suggest that melatonin-treated gut microbiota increase the production of SCFAs, which improve gut health by reducing oxidative stress, autophagy and inflammation. The transfer of melatonin-treated gut microbiota may be a new and effective method by which to ameliorate gut health in perinatal and weaned mammals.


Assuntos
Microbioma Gastrointestinal , Melatonina , Feminino , Ratos , Animais , Melatonina/farmacologia , Transplante de Microbiota Fecal/métodos , Inflamação , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA