Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(7): 180, 2023 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37329359

RESUMO

Time-restricted feeding (TRF) limits the time and duration of food availability without calorie reduction. Although a high-fat (HF) diet leads to disrupted circadian rhythms, TRF can prevent metabolic diseases, emphasizing the importance of the timing component. However, the question of when to implement the feeding window and its metabolic effect remains unclear, specifically in obese and metabolically impaired animals. Our aim was to study the effect of early vs. late TRF-HF on diet-induced obese mice in an 8:16 light-dark cycle. C57BL male mice were fed ad libitum a high-fat diet for 14 weeks after which they were given the same food during the early (E-TRF-HF) or late (L-TRF-HF) 8 h of the dark phase for 5 weeks. The control groups were fed ad libitum either a high-fat (AL-HF) or a low-fat diet (AL-LF). Respiratory exchange ratio (RER) was highest for the AL-LF group and the lowest for the AL-HF group. E-TRF-HF led to lower body weight and fat depots, lower glucose, C-peptide, insulin, cholesterol, leptin, TNFα, and ALT levels compared with L-TRF-HF- and AL-HF-fed mice. TRF-HF regardless whether it was early or late led to reduced inflammation and fat accumulation compared with AL-HF-fed mice. E-TRF-HF led to advanced liver circadian rhythms with higher amplitudes and daily expression levels of clock proteins. In addition, TRF-HF led to improved metabolic state in muscle and adipose tissue. In summary, E-TRF-HF leads to increased insulin sensitivity and fat oxidation and decreased body weight, fat profile and inflammation contrary to AL-HF-fed, but comparable to AL-LF-fed mice. These results emphasize the importance of timed feeding compared to ad libitum feeding, specifically to the early hours of the activity period.


Assuntos
Tecido Adiposo , Obesidade , Masculino , Camundongos , Animais , Camundongos Obesos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Dieta Hiperlipídica/efeitos adversos , Inflamação , Insulina , Ritmo Circadiano/fisiologia , Redução de Peso
2.
Plant Foods Hum Nutr ; 77(1): 128-134, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35178649

RESUMO

Resveratrol is a nutritional substance that has both metabolic and circadian effects. While some studies indicate a correlation between resveratrol and reduced gluconeogenesis, others propose the opposite. Our aim was to study the metabolic effect of resveratrol around the circadian clock in order to determine more accurately the hepatic signaling pathways involved. AML-12 hepatocytes were treated with resveratrol and clock and metabolic markers were measured around the clock. Resveratrol-treated AML-12 hepatocytes showed reduced ratio of the following key metabolic factors: phosphorylated PP2A to total PP2A (pPP2A/PP2A), pAKT/AKT, pFOXO1/FOXO1 and pAMPK/AMPK, indicating inhibition of AKT and AMPK, but activation of PP2A and FOXO1. In addition, the levels of phosphorylated mTOR were low after resveratrol treatment. The levels of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) were significantly higher after resveratrol treatment. In accordance with the reduced mTOR activity, the ratio of pBMAL1/BMAL1, the clock transcription factor, also decreased. Bmal1 mRNA oscillated robustly in AML-12 hepatocytes, but resveratrol treatment led to a phase advance and a decrease in its amplitude, similarly to the effect on Srebp1c and Pgc1α mRNA. After resveratrol treatment, daily mRNA levels of Bmal1, Sirt1 and Srebp1c were significantly higher. Resveratrol changes the circadian expression of metabolic and clock genes activating the fasting state and inducing the PP2A-FOXO1-PEPCK pathway.


Assuntos
Fatores de Transcrição ARNTL , Leucemia Mieloide Aguda , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/farmacologia , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Fatores de Transcrição ARNTL/farmacologia , Jejum , Hepatócitos/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Fígado , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , RNA Mensageiro , Resveratrol/metabolismo , Resveratrol/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia
3.
Biol Cell ; 112(8): 213-221, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32306421

RESUMO

BACKGROUND INFORMATION: Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell and whole-body energy homoeostasis. REV-ERBα is a nuclear receptor that plays an important role in metabolism. While mTORC1 activation is necessary for muscle differentiation, the role of REV-ERBα is less clear. RESULTS: We studied the effect of REV-ERBα overexpression and silencing as well as mTORC1 activation and inhibition on the differentiation of C2C12 myoblasts to myotubes. mTOR, myogenin and REV-ERBα were induced during differentiation of myoblasts into myotubes. REV-ERBα was found to activate mTORC1 during the differentiation process even in the absence of the differentiation medium. This activation was presumably through the downregulation of the expression of TSC1, an mTORC1 inhibitor. CONCLUSION: Herein we show that REV-ERBα promotes myoblasts differentiation via the activation of the mTORC1 signalling pathway. SIGNIFICANCE: REV-ERBα modulation can activate mTORC1 signalling and promote myoblasts differentiation.


Assuntos
Diferenciação Celular/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Camundongos , Mioblastos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Transfecção
4.
Clin Gastroenterol Hepatol ; 18(1): 115-122.e1, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-30981000

RESUMO

BACKGROUND & AIMS: Sleep disruption modifies the immune system and can trigger flares of inflammatory bowel diseases (IBD). Changes in expression of clock genes have been reported in patients with IBD. We investigated whether a change in the circadian clock is an early event in development of IBD. METHODS: We performed a prospective study of patients younger than 21 years old who underwent diagnostic endoscopies at the pediatric and adult gastroenterology units at the Tel Aviv Sourasky Medical Center from August 2016 through August 2017. Questionnaires were completed by 32 patients with IBD (8-21 years old) and 18 healthy individuals (controls) that provided data on demographics, sleep, disease activity scores. We also obtained data on endoscopic scores, anthropometric parameters, blood level of C-reactive protein (CRP), and fecal level of calprotectin. Peripheral blood and intestinal mucosa samples were analyzed for expression levels of clock gene (CLOCK, BMAL1, CRY1, CRY2, PER1, and PER2). RESULTS: Levels of CRP and fecal calprotectin were significantly higher in patients with IBD compared with controls (P<.05). Expression levels of clock genes (CLOCK, CRY1, CRY2, PER1, and PER2) were significantly lower in inflamed intestinal mucosa from patients compared with intestinal mucosa from controls (P<.05). Expression levels of all clock genes except for PER2, were also significantly lower in non-inflamed intestinal mucosal tissues from patients compared with controls (P<.05). Expression levels of clock genes (CLOCK, BMAL1, CRY1, CRY2, PER1 and PER2) were lower in white blood cells from patients with IBD compared with controls. This reduction was greater in white blood cells from patients with ulcerative colitis than in patients with Crohn's disease. CONCLUSION: Young, newly diagnosed, untreated patients with IBD have reduced expression of clock genes in inflamed and non-inflamed intestinal mucosal samples, and also in blood cells, compared with healthy individuals. Alterations in expression of clock genes might be an early event in IBD pathogenesis. ClinicalTrials.gov Identifier: NCT03662646.


Assuntos
Relógios Circadianos/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Doenças Inflamatórias Intestinais/genética , Adolescente , Criança , Relógios Circadianos/imunologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/imunologia , Colonoscopia , Feminino , Expressão Gênica , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/imunologia , Leucócitos/imunologia , Masculino , Estudos Prospectivos , Transtornos do Sono do Ritmo Circadiano/genética , Transtornos do Sono do Ritmo Circadiano/imunologia
5.
Cell Mol Life Sci ; 76(9): 1795-1806, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30694347

RESUMO

Saturated fatty acids, such as palmitate, lead to circadian disruption in cell culture. Moreover, information regarding the effects of unsaturated fatty acids on circadian parameters is scarce. We aimed at studying the effects of low doses of saturated as well as unsaturated fatty acids on circadian metabolism in vivo and at deciphering the mechanism by which fatty acids convey their effect. Mice were fed non-obesogenic doses of palm or olive oil and hepatocytes were treated with palmitate and oleate. Mice fed non-obesogenic doses of palm oil showed increased signaling towards fatty acid synthesis, while olive oil increased signaling towards fatty acid oxidation. Low doses of palmitate and oleate were sufficient to alter circadian rhythms, due to changes in the expression and/or activity of key metabolic proteins. Palmitate, but not oleate, counteracted the reduction in lipid accumulation and BMAL1-induced expression of mitochondrial genes involved in fatty acid oxidation. Palmitate was also found to interfere with the transcriptional activity of CLOCK:BMAL1 by preventing BMAL1 deacetylation and activation. In addition, palmitate, but not oleate, reduced PER2-mediated transcriptional activation and increased REV-ERBα-mediated transcriptional inhibition of Bmal1. The inhibition of PER2-mediated transcriptional activation by palmitate was achieved by interfering with PER2 nuclear translocation. Indeed, PER2 reduced fat accumulation in hepatocytes and this reduction was prevented by palmitate. Herein, we show that the detrimental metabolic alteration seen with high doses of palmitate manifests itself early on even with non-obesogenic levels. This is achieved by modulating BMAL1 at several levels abrogating its activity and expression.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Ácidos Graxos Insaturados/farmacologia , Ácido Oleico/farmacologia , Azeite de Oliva/farmacologia , Óleo de Palmeira/farmacologia , Palmitatos/farmacologia , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Linhagem Celular , Ácidos Graxos Insaturados/biossíntese , Fígado/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos
6.
Cells ; 13(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38920697

RESUMO

Resveratrol is a polyphenol known to have metabolic as well as circadian effects. However, there is little information regarding the metabolic and circadian effect of resveratrol on muscle cells. We sought to investigate the metabolic impact of resveratrol throughout the circadian cycle to clarify the associated signaling pathways. C2C12 myotubes were incubated with resveratrol in the presence of increasing concentrations of glucose, and metabolic and clock proteins were measured for 24 h. Resveratrol led to SIRT1, AMPK and PP2A activation. Myotubes treated with increasing glucose concentrations showed higher activation of the mTOR signaling pathway. However, resveratrol did not activate the mTOR signaling pathway, except for P70S6K and S6. In accordance with the reduced mTOR activity, resveratrol led to advanced circadian rhythms and reduced levels of pBMAL1 and CRY1. Resveratrol increased myogenin expression and advanced its rhythms. In conclusion, resveratrol activates the SIRT1-AMPK-PP2A axis, advances circadian rhythms and induces muscle development.


Assuntos
Proteínas Quinases Ativadas por AMP , Ritmo Circadiano , Fibras Musculares Esqueléticas , Proteína Fosfatase 2 , Resveratrol , Transdução de Sinais , Sirtuína 1 , Resveratrol/farmacologia , Sirtuína 1/metabolismo , Animais , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
7.
Food Funct ; 15(8): 4389-4398, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38563085

RESUMO

ß-Hydroxy-ß-methylbutyrate (HMB) is a breakdown product of leucine, which promotes muscle growth. Although some studies indicate that HMB activates AKT and mTOR, others show activation of the downstream effectors, P70S6K and S6, independent of mTOR. Our aim was to study the metabolic effect of HMB around the circadian clock in order to determine more accurately the signaling pathway involved. C2C12 myotubes were treated with HMB and clock, metabolic and myogenic markers were measured around the clock. HMB-treated C2C12 myotubes showed no activation of AKT and mTOR, but did show activation of P70S6K and S6. Activation of P70S6K and S6 was also found when myotubes were treated with HMB combined with metformin, an indirect mTOR inhibitor, or rapamycin, a direct mTOR inhibitor. The activation of the P70S6K and S6 independent of AKT and mTOR, was accompanied by increased activation of phospholipase D2 (PLD). In addition, HMB led to high amplitude and advanced circadian rhythms. In conclusion, HMB induces myogenesis in C2C12 by activating P70S6K and S6 via PLD2, rather than AKT and mTOR, leading to high amplitude advanced rhythms.


Assuntos
Ritmo Circadiano , Fibras Musculares Esqueléticas , Fosfolipase D , Valeratos , Valeratos/farmacologia , Animais , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Camundongos , Fosfolipase D/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos
8.
Biochim Biophys Acta ; 1822(11): 1796-806, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22968146

RESUMO

Metformin is a commonly-used treatment for type 2 diabetes, whose mechanism of action has been linked, in part, to activation of AMP-activated protein kinase (AMPK). However, little is known regarding its effect on circadian rhythms. Our aim was to evaluate the effect of metformin administration on metabolism, locomotor activity and circadian rhythms. We tested the effect of metformin treatment in the liver and muscle of young lean, healthy mice, as obesity and diabetes disrupt circadian rhythms. Metformin led to increased leptin and decreased glucagon levels. The effect of metformin on liver and muscle metabolism was similar leading to AMPK activation either by liver kinase B1 (LKB1) and/or other kinases in the muscle. AMPK activation resulted in the inhibition of acetyl CoA carboxylase (ACC), the rate limiting enzyme in fatty acid synthesis. Metformin also led to the activation of liver casein kinase I α (CKIα) and muscle CKIε, known modulators of the positive loop of the circadian clock. This effect was mainly of phase advances in the liver and phase delays in the muscle in clock and metabolic genes and/or protein expression. In conclusion, our results demonstrate the differential effects of metformin in the liver and muscle and the critical role the circadian clock has in orchestrating metabolic processes.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Basal/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Metformina/administração & dosagem , Acetil-CoA Carboxilase/metabolismo , Animais , Glucagon/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Músculo Esquelético/metabolismo , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/metabolismo
9.
Immunology ; 140(4): 465-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23876110

RESUMO

Allergic diseases are frequently exacerbated between midnight and early morning, suggesting a role for the biological clock. Mast cells (MC) and eosinophils are the main effector cells of allergic diseases and some MC-specific or eosinophil-specific markers, such as tryptase or eosinophil cationic protein, exhibit circadian variation. Here, we analysed whether the circadian clock is functional in mouse and human eosinophils and MC. Mouse jejunal MC and polymorphonuclear cells from peripheral blood (PMNC) were isolated around the circadian cycle. Human eosinophils were purified from peripheral blood of non-allergic and allergic subjects. Human MC were purified from intestinal tissue. We found a rhythmic expression of the clock genes mPer1, mPer2, mClock and mBmal1 and eosinophil-specific genes mEcp, mEpo and mMbp in murine PMNC. We also found circadian variations for hPer1, hPer2, hBmal1, hClock, hEdn and hEcp mRNA and eosinophil cationic protein (ECP) in human eosinophils of both healthy and allergic people. Clock genes mPer1, mPer2, mClock and mBmal1 and MC-specific genes mMcpt-5, mMcpt-7, mc-kit and mFcεRI α-chain and protein levels of mMCPT5 and mc-Kit showed robust oscillation in mouse jejunum. Human intestinal MC expressed hPer1, hPer2 and hBmal1 as well as hTryptase and hFcεRI α-chain, in a circadian manner. We found that pre-stored histamine and de novo synthesized cysteinyl leukotrienes, were released in a circadian manner by MC following IgE-mediated activation. In summary, the biological clock controls MC and eosinophils leading to circadian expression and release of their mediators and, hence it might be involved in the pathophysiology of allergy.


Assuntos
Relógios Biológicos , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Ritmo Circadiano , Eosinófilos/metabolismo , Hipersensibilidade/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/metabolismo , Animais , Relógios Biológicos/genética , Estudos de Casos e Controles , Células Cultivadas , Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Cisteína/metabolismo , Eosinófilos/imunologia , Regulação da Expressão Gênica , Liberação de Histamina , Humanos , Hipersensibilidade/genética , Hipersensibilidade/imunologia , Imunoglobulina E/metabolismo , Intestinos/imunologia , Leucotrienos/metabolismo , Masculino , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo , Fatores de Tempo
10.
FASEB J ; 26(8): 3493-502, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22593546

RESUMO

Disruption of circadian rhythms leads to obesity and metabolic disorders. Timed restricted feeding (RF) provides a time cue and resets the circadian clock, leading to better health. In contrast, a high-fat (HF) diet leads to disrupted circadian expression of metabolic factors and obesity. We tested whether long-term (18 wk) clock resetting by RF can attenuate the disruptive effects of diet-induced obesity. Analyses included liver clock gene expression, locomotor activity, blood glucose, metabolic markers, lipids, and hormones around the circadian cycle for a more accurate assessment. Compared with mice fed the HF diet ad libitum, the timed HF diet restored the expression phase of the clock genes Clock and Cry1 and phase-advanced Per1, Per2, Cry2, Bmal1, Rorα, and Rev-erbα. Although timed HF-diet-fed mice consumed the same amount of calories as ad libitum low-fat diet-fed mice, they showed 12% reduced body weight, 21% reduced cholesterol levels, and 1.4-fold increased insulin sensitivity. Compared with the HF diet ad libitum, the timed HF diet led to 18% lower body weight, 30% decreased cholesterol levels, 10% reduced TNF-α levels, and 3.7-fold improved insulin sensitivity. Timed HF-diet-fed mice exhibited a better satiated and less stressed phenotype of 25% lower ghrelin and 53% lower corticosterone levels compared with mice fed the timed low-fat diet. Taken together, our findings suggest that timing can prevent obesity and rectify the harmful effects of a HF diet.


Assuntos
Ritmo Circadiano/fisiologia , Dieta Hiperlipídica , Animais , Proteínas CLOCK , Corticosterona/sangue , Dieta , Ingestão de Alimentos , Resistência à Insulina , Lipídeos/sangue , Masculino , Camundongos , Atividade Motora
11.
Metabolites ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36837757

RESUMO

We aimed to explore whether fructose in the absence or presence of fatty acids modulates circadian metabolism in AML-12 hepatocytes. Fructose treatment under steatosis conditions (FruFA) led to fat synthesis resulting in increased triglycerides and cholesterol content. Fructose led to reduced activity of the AMPK and mTOR-signaling pathway. However, FruFA treatment led to inhibition of the AMPK signaling pathway but activation of the mTOR pathway. Fructose also increased the expression of inflammatory markers, whereas the addition of fatty acids dampened their circadian expression. At the clock level, fructose or FruFA altered the expression of the core clock. More specifically, fructose led to altered expression of the BMAL1-RORα-REV-ERBα axis, together with reduced phosphorylated BMAL1 levels. In conclusion, our results show that hepatocytes treated with fructose respond differently if fatty acids are present, leading to a differential effect on metabolism and circadian rhythms. This is achieved by modulating BMAL1 activity and expression.

12.
J Cell Mol Med ; 15(12): 2745-59, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20731750

RESUMO

The circadian clock in peripheral tissues can be entrained by restricted feeding (RF), a regimen that restricts the duration of food availability with no calorie restriction (CR). However, it is not known whether RF can delay the occurrence of age-associated changes similar to CR. We measured circadian expression of clock genes, disease marker genes, metabolic factors and inflammatory and allergy markers in mouse serum, liver, jejunum and white adipose tissue (WAT) after long-term RF of 4 months. We found that circadian rhythmicity is more robust and is phase advanced in most of the genes and proteins tested under RF. In addition, average daily levels of some disease and inflammatory markers were reduced under RF, including liver Il-6 mRNA, tumour necrosis factor (TNF)-α and nuclear factor κB (NF-κB) protein; jejunum Arginase, Afp, Gadd45ß, Il-1α and Il-1ß mRNA, and interleukin (IL)-6 and TNF-α protein and WAT Il-6, Il-1ß, Tnfα and Nfκb mRNA. In contrast, the anti-inflammatory cytokine Il-10 mRNA increased in the liver and jejunum. Our results suggest that RF may share some benefits with those of CR. As RF is a less harsh regimen to follow than CR, the data suggest it could be proposed for individuals seeking to improve their health.


Assuntos
Biomarcadores/metabolismo , Restrição Calórica , Ritmo Circadiano/fisiologia , Coração/fisiologia , Inflamação/metabolismo , Neoplasias/metabolismo , Animais , Western Blotting , Peso Corporal , Citocinas/genética , Citocinas/metabolismo , Inflamação/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , NF-kappa B/genética , NF-kappa B/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Trombose/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
13.
Mol Cell Endocrinol ; 521: 111108, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33285244

RESUMO

REV-ERBα is a nuclear receptor that inhibits Bmal1 transcription as part of the circadian clock molecular mechanism. Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a master regulator of cell and whole-body energy homeostasis, that serves as an important link between metabolism and circadian clock, in part, by regulating BMAL1 activity. While the connection of REV-ERBα to the circadian clock molecular mechanism is well characterized, the interaction between mTORC1, REV-ERBα and the circadian clock machinery is not very clear. We used leucine and rapamycin to modulate mTORC1 activation and evaluate this effect on circadian rhythms. In the liver, mTORC1 was inhibited by leucine. REV-ERBα overexpression activated the mTORC1 signaling pathway via transcription inhibition of mTORC1 inhibitor, Tsc1, antagonizing the effect of leucine, while its silencing downregulated mTORC1 signaling. Activation of mTORC1 led to increased BMAL1 phosphorylation. Activation as well as inhibition of mTORC1 led to altered circadian rhythms in mouse muscle. Inhibition of liver mTORC1 by leucine or rapamycin led to low-amplitude circadian rhythms. In summary, our study shows that leucine inhibits liver mTORC1 pathway leading to dampened circadian rhythms. REV-ERBα activates the mTORC1 pathway, leading to phosphorylation of the clock protein BMAL1.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Ritmo Circadiano/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa/metabolismo , Fatores de Transcrição ARNTL/genética , Animais , Linhagem Celular , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Regulação para Baixo , Inativação Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Leucina/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculos/efeitos dos fármacos , Músculos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Fosforilação , RNA Interferente Pequeno , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína 1 do Complexo Esclerose Tuberosa/genética , Regulação para Cima
14.
Diabetes Res Clin Pract ; 178: 108941, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34245798

RESUMO

AIMS: Feeding regimens alter circadian rhythms in peripheral tissues, but the mechanism is not understood. We aimed to study whether soluble factors, rather than neuronal-based communication, directly influence circadian rhythms in the liver, in response to a nutritional treatment in type 2 diabetes (T2D) patients. METHODS: Cultured hepatocytes were treated with serum of insulin-treated T2D patients following either a three-meal diet (3Mdiet) or six-meal diet (6Mdiet) and the circadian expression of clock and metabolic genes was measured. RESULTS: Serum of the 3Mdiet group led to increased amplitudes and daily mRNA levels of the positive limb of the circadian clock (Clock, Bmal1, Rorα). In parallel, serum of the 3Mdiet group led to the downregulation of the negative limb of the circadian clock (Cry1 and Per1), compared to both baseline and 6Mdiet. In contrast, serum of the 6Mdiet group led to a more distorted expression pattern. The catabolic genes Sirt1 and Ampk were significantly upregulated only by serum of the 3Mdiet group. CONCLUSIONS: Our results show that serum of type 2 diabetes patients consuming the 3Mdiet contains soluble factors that reset circadian rhythms leading to an expression pattern similar to that of healthy people. This clock pattern contributes to improved glucose metabolism.


Assuntos
Proteínas CLOCK/fisiologia , Ritmo Circadiano , Diabetes Mellitus Tipo 2 , Hepatócitos/fisiologia , Células Cultivadas , Diabetes Mellitus Tipo 2/sangue , Dieta , Humanos
15.
Food Nutr Res ; 642020.
Artigo em Inglês | MEDLINE | ID: mdl-32952497

RESUMO

BACKGROUND: Dietary oils differ in their fatty acid composition and the presence of additional microcomponents (antioxidants, etc.). These differences are thought to invoke different biochemical pathways, thus affecting fats and carbohydrates metabolism differently. Olive oil (OO) and soybean oil (SO) are common vegetable oils in the local cuisine. Peanuts oils of local varieties are viewed as potential sources of dietary vegetable oils, especially in the food industry. OBJECTIVE: We examined the effect of four different dietary vegetable oils on carbohydrate and lipid metabolism in mice. The selected oils were OO, high in oleic acid, extracted from cultivated high oleic acid peanut (C-PO), regular peanut oil (PO), and SO. DESIGN: In this study, 32 male C57BL/6J mice were randomly divided into four groups (n = 8 in each group) and were fed with four different diets enriched with 4% (w/w) dietary vegetable oils (OO, C-PO, PO, or SO). After 10 weeks, the mice were sacrificed. Western blot was used to examine proteins such as phospho-AMP-activated protein kinase (p-AMPK), ace-tyl-CoA carboxylase (ACC), cluster of differentiation 36 (CD36), and Sirtuin 1 (SIRT1), whereas real-time polymerase chain reaction (PCR) was used to examine the expression of sterol regulatory element-binding protein-1c (SREBP-1C), fatty acid synthase (FAS), glucose-6-phosphatase (G6Pase), and CD36 transcripts. RESULTS: In mice-fed SO, lipid accumulation was predominately in adipose tissue, accompanied a tendency decrease in insulin sensitivity. Mice-fed OO had lower plasma triglycerides (TG) and increased hepatic CD36 gene expression. The C-PO group presented lower messenger RNA (mRNA) levels in the liver for all examined genes: SREBP-1c, FAS, G6Pase, and CD36. There were no significant differences in weight gain, plasma cholesterol and high-density lipoprotein (HDL) cholesterol levels, hepatic ACC, SIRT1, AMPK, and CD36 protein levels or in liver function among the diets. DISCUSSION: It seems that as long as fat is consumed in moderation, oil types may play a lesser role in the metabolism of healthy individuals. CONCLUSION: This finding has the potential to increase flexibility in choosing oil types for consumption.

16.
Immunology ; 127(1): 116-22, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19191901

RESUMO

Innate immunity plays a role in systemic lupus erythematosus (SLE). Our objective was to determine the levels of defensins, which are antimicrobial and immunomodulatory polypeptides, in SLE. Sera from SLE patients and healthy controls were tested for pro-inflammatory human beta-defensin 2 (hBD-2) and for alpha-defensin human neutrophil peptide 1 (HNP-1). hBD-2 could not be detected by enzyme-linked immunosorbent assay (ELISA) and its mRNA levels were low in SLE patients and similar to those found in controls. In contrast, the mean alpha-defensin level in the sera of all SLE patients (11.07 +/- 13.92 ng/microl) was significantly higher than that of controls (0.12 +/- 0.07 ng/microl). Moreover, 60% of patients demonstrated very high serum levels (18.5 +/- 13.36 ng/microl) and 50% showed elevated gene expression in polymorphonuclear cells. High alpha-defensin levels correlated with disease activity, but not with neutrophil count. Thus, activation and degranulation of neutrophils led to alpha-defensin secretion in SLE patients. Given the immunomodulatory role of alpha-defensins, it is possible that their secretion may activate the adaptive immune system leading to a systemic response.


Assuntos
Lúpus Eritematoso Sistêmico/imunologia , alfa-Defensinas/sangue , Adolescente , Adulto , Idoso , Criança , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Expressão Gênica/imunologia , Humanos , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Reação em Cadeia da Polimerase/métodos , RNA Mensageiro/genética , Índice de Gravidade de Doença , Adulto Jovem , alfa-Defensinas/genética , beta-Defensinas/sangue , beta-Defensinas/genética
17.
Mech Ageing Dev ; 130(3): 154-60, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19041664

RESUMO

Calorie restriction (CR) resets circadian rhythms and extends life span. Intermittent fasting (IF) also extends life span, but its affect on circadian rhythms has not been studied. To study the effect of IF alongside CR, we imposed IF in FVB/N mice or IF combined with CR using the transgenic FVB/N alphaMUPA mice that, when fed ad libitum, exhibit spontaneously reduced eating and extended life span. Our results show that when food was introduced during the light period, body temperature peak was not disrupted. In contrast, IF caused almost arrhythmicity in clock gene expression in the liver and advanced mPer2 and mClock expression. However, IF restored the amplitudes of clock gene expression under disruptive light condition regardless whether the animals were calorically restricted or not. Unlike daytime feeding, nighttime feeding yielded rhythms similar to those generated during ad libitum feeding. Taken together, our results show that IF can affect circadian rhythms differently depending on the timing of food availability, and suggest that this regimen induces a metabolic state that affects the suprachiasmatic nuclei (SCN) clock.


Assuntos
Comportamento Animal , Restrição Calórica , Ritmo Circadiano , Jejum , Comportamento Alimentar , Fotoperíodo , Fatores de Transcrição ARNTL , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Temperatura Corporal , Proteínas CLOCK , Proteínas de Ciclo Celular/genética , Ritmo Circadiano/genética , Criptocromos , Ingestão de Alimentos , Flavoproteínas/genética , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Circadianas Period , RNA/metabolismo , Fatores de Tempo , Transativadores/genética , Fatores de Transcrição/genética , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
18.
Adipocyte ; 8(1): 392-400, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31791161

RESUMO

Saturated fatty acids, such as palmitate, lead to circadian disruption. We aimed at studying the effect of low doses of palmitate on circadian metabolism and to decipher the mechanism by which fatty acids convey their effect in adipocytes. Mice were fed non-obesogenic doses of palm or olive oil and adipocytes were treated with palmitate and oleate. Cultured adipocytes treated with oleate showed increased AMPK activity and induced the expression of mitochondrial genes indicating increased fatty acid oxidation, while palmitate increased ACC activity and induced the expression of lipogenic genes, indicating increased fatty acid synthesis. Low doses of palmitate were sufficient to alter circadian rhythms, due to changes in the expression and/or activity of key metabolic proteins including GSK3ß and AKT. Palmitate-induced AKT and GSK3ß activation led to the phosphorylation of BMAL1 that resulted in low levels as well as high amplitude of circadian clock expression. In adipocytes, the detrimental metabolic alteration of palmitate manifests itself early on even at non-obesogenic levels. This is accompanied by modulating BMAL1 expression and phosphorylation levels, which lead to dampened clock gene expression.


Assuntos
Adipócitos/metabolismo , Relógios Circadianos/efeitos dos fármacos , Ácido Oleico/administração & dosagem , Ácido Palmítico/administração & dosagem , Células 3T3-L1 , Proteínas Quinases Ativadas por AMP/genética , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Proteínas Mitocondriais/genética , Ácido Oleico/farmacologia , Azeite de Oliva/química , Óleo de Palmeira/química , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos
19.
Obesity (Silver Spring) ; 27(12): 2018-2024, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31674727

RESUMO

OBJECTIVE: Serotonin was shown to interfere with the differentiation of brown adipocytes. In addition, clock components inhibit brown adipogenesis through direct transcriptional control of key components of the transforming growth factor ß pathway. The aim of this study was to investigate whether serotonin abrogates brown adipogenesis by affecting clock functionality. METHODS: Nondifferentiated and differentiated HIB1B brown adipocytes were treated with serotonin, and their clock expression and functionality and differentiation state were examined. RESULTS: Nondifferentiated HIB1B brown adipocytes treated with serotonin showed increased brown adipocyte markers alongside increased brain-muscle Arnt-like protein 1 (Bmal1) and RAR related orphan receptor A (Rora) but decreased nuclear receptor Rev-erbα mRNA levels. BMAL1 overexpression together with serotonin led to significantly lower brown adipocyte markers. Serotonin in the differentiation cocktail led to reduced brown adipocyte markers as well as clock gene expression. After differentiation, serotonin treatment significantly decreased brown adipocyte markers and reduced BMAL1 and RORα but increased REV-ERBα protein levels. Addition of serotonin to the differentiation medium or addition after differentiation reduced activity of calcium/calmodulin-dependent protein kinase type II subunit gamma, which interferes with circadian locomoter output cycles protein kaput (CLOCK):BMAL1 dimerization and transactivation. CONCLUSIONS: Clock expression is required at the early stages of differentiation to brown adipocytes, and serotonin interferes with this process by modulating clock functionality. Serotonin interferes with clock functionality by reducing the levels of the active form of calcium/calmodulin-dependent protein kinase type II subunit gamma.


Assuntos
Adipócitos Marrons/efeitos dos fármacos , Relógios Circadianos/fisiologia , Serotonina/uso terapêutico , Diferenciação Celular , Humanos , Serotonina/farmacologia
20.
Diabetes Care ; 42(12): 2171-2180, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31548244

RESUMO

OBJECTIVE: In type 2 diabetes, insulin resistance and progressive ß-cell failure require treatment with high insulin doses, leading to weight gain. Our aim was to study whether a three-meal diet (3Mdiet) with a carbohydrate-rich breakfast may upregulate clock gene expression and, as a result, allow dose reduction of insulin, leading to weight loss and better glycemic control compared with an isocaloric six-meal diet (6Mdiet). RESEARCH DESIGN AND METHODS: Twenty-eight volunteers with diabetes (BMI 32.4 ± 5.2 kg/m2 and HbA1c 8.1 ± 1.1% [64.5 ± 11.9 mmol/mol]) were randomly assigned to 3Mdiet or 6Mdiet. Body weight, glycemic control, continuous glucose monitoring (CGM), appetite, and clock gene expression were assessed at baseline, after 2 weeks, and after 12 weeks. RESULTS: 3Mdiet, but not 6Mdiet, led to a significant weight loss (-5.4 ± 0.9 kg) (P < 0.01) and decreased HbA1c (-12 mmol/mol [-1.2%]) (P < 0.0001) after 12 weeks. Fasting glucose and daily and nocturnal glucose levels were significantly lower on the 3Mdiet. CGM showed a significant decrease in the time spent in hyperglycemia only on the 3Mdiet. Total daily insulin dose was significantly reduced by 26 ± 7 units only on the 3Mdiet. There was a significant decrease in the hunger and cravings only in the 3Mdiet group. Clock genes exhibited oscillation, increased expression, and higher amplitude on the 3Mdiet compared with the 6Mdiet. CONCLUSIONS: A 3Mdiet, in contrast to an isocaloric 6Mdiet, leads to weight loss and significant reduction in HbA1c, appetite, and overall glycemia, with a decrease in daily insulin. Upregulation of clock genes seen in this diet intervention could contribute to the improved glucose metabolism.


Assuntos
Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/terapia , Dieta para Diabéticos/métodos , Hemoglobinas Glicadas/metabolismo , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Adulto , Glicemia/metabolismo , Automonitorização da Glicemia , Relógios Circadianos , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Jejum , Feminino , Humanos , Hiperglicemia/tratamento farmacológico , Masculino , Refeições/fisiologia , Pessoa de Meia-Idade , Resultado do Tratamento , Regulação para Cima , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA