Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Plant Microbe Interact ; 37(4): 357-369, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38105438

RESUMO

Type IV pili (TFP) play a crucial role in the sensing of the external environment for several bacteria. This surface sensing is essential for the lifestyle transitions of several bacteria and involvement in pathogenesis. However, the precise mechanisms underlying TFP's integration of environmental cues, particularly in regulating the TFP-Chp system and its effects on Xanthomonas physiology, social behavior, and virulence, remain poorly understood. In this study, we focused on investigating Clp, a global transcriptional regulator similar to CRP-like proteins, in Xanthomonas oryzae pv. oryzae, a plant pathogen. Our findings reveal that Clp integrates environmental cues detected through diffusible signaling factor (DSF) quorum sensing into the TFP-Chp regulatory system. It accomplishes this by directly binding to TFP-Chp promoters in conjunction with intracellular levels of cyclic-di-GMP, a ubiquitous bacterial second messenger, thereby controlling TFP expression. Moreover, Clp-mediated regulation is involved in regulating several cellular processes, including the production of virulence-associated functions. Collectively, these processes contribute to host colonization and disease initiation. Our study elucidates the intricate regulatory network encompassing Clp, environmental cues, and the TFP-Chp system, providing insights into the molecular mechanisms that drive bacterial virulence in Xanthomonas spp. These findings offer valuable knowledge regarding Xanthomonas pathogenicity and present new avenues for innovative strategies aimed at combating plant diseases caused by these bacteria. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Bactérias , GMP Cíclico/análogos & derivados , Fímbrias Bacterianas , Regulação Bacteriana da Expressão Gênica , Doenças das Plantas , Regiões Promotoras Genéticas , Xanthomonas , Xanthomonas/patogenicidade , Xanthomonas/genética , Xanthomonas/metabolismo , Xanthomonas/fisiologia , Virulência , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/microbiologia , Percepção de Quorum , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Oryza/microbiologia , GMP Cíclico/metabolismo
2.
Phytopathology ; 112(2): 209-218, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34289715

RESUMO

The Xanthomonas group of phytopathogens causes economically important diseases that lead to severe yield loss in major crops. Some Xanthomonas species are known to have an epiphytic and in planta lifestyle that is coordinated by several virulence-associated functions, cell-to-cell signaling (using diffusible signaling factor [DSF]), and environmental conditions, including iron availability. In this review, we described the role of cell-to-cell signaling by the DSF molecule and iron in the regulation of virulence-associated functions. Although DSF and iron are involved in the regulation of several virulence-associated functions, members of the Xanthomonas group of plant pathogens exhibit atypical patterns of regulation. Atypical patterns contribute to the adaptation to different lifestyles. Studies on DSF and iron biology indicate that virulence-associated functions can be regulated in completely contrasting fashions by the same signaling system in closely related xanthomonads.


Assuntos
Xanthomonas , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Homeostase , Ferro/metabolismo , Doenças das Plantas , Percepção de Quorum/fisiologia , Transdução de Sinais , Virulência
3.
PLoS Genet ; 15(9): e1008395, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31527910

RESUMO

Many microbes exhibit quorum sensing (QS) to cooperate, share and perform a social task in unison. Recent studies have shown the emergence of reversible phenotypic heterogeneity in the QS-responding pathogenic microbial population under laboratory conditions as a possible bet-hedging survival strategy. However, very little is known about the dynamics of QS-response and the nature of phenotypic heterogeneity in an actual host-pathogen interaction environment. Here, we investigated the dynamics of QS-response of a Gram-negative phytopathogen Xanthomonas pv. campestris (Xcc) inside its natural host cabbage, that communicate through a fatty acid signal molecule called DSF (diffusible signal factor) for coordination of several social traits including virulence functions. In this study, we engineered a novel DSF responsive whole-cell QS dual-bioreporter to measure the DSF mediated QS-response in Xcc at the single cell level inside its natural host plant in vivo. Employing the dual-bioreporter strain of Xcc, we show that QS non-responsive cells coexist with responsive cells in microcolonies at the early stage of the disease; whereas in the late stages, the QS-response is more homogeneous as the QS non-responders exhibit reduced fitness and are out competed by the wild-type. Furthermore, using the wild-type Xcc and its QS mutants in single and mixed infection studies, we show that QS mutants get benefit to some extend at the early stage of disease and contribute to localized colonization. However, the QS-responding cells contribute to spread along xylem vessel. These results contrast with the earlier studies describing that expected cross-induction and cooperative sharing at high cell density in vivo may lead to synchronize QS-response. Our findings suggest that the transition from heterogeneity to homogeneity in QS-response within a bacterial population contributes to its overall virulence efficiency to cause disease in the host plant under natural environment.


Assuntos
Interações Hospedeiro-Patógeno/genética , Percepção de Quorum/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Variação Biológica da População/genética , Brassica/genética , Brassica/microbiologia , Doenças das Plantas/microbiologia , Transdução de Sinais , Virulência , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
4.
Environ Microbiol ; 23(9): 5433-5462, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34240791

RESUMO

Xanthomonas oryzae pv. oryzae (Xoo) causes a serious disease of rice known as bacterial leaf blight. Several virulence-associated functions have been characterized in Xoo. However, the role of important second messenger c-di-GMP signalling in the regulation of virulence-associated functions still remains elusive in this phytopathogen. In this study we have performed an investigation of 13 c-di-GMP modulating deletion mutants to understand their contribution in Xoo virulence and lifestyle transition. We show that four Xoo proteins, Xoo2331, Xoo2563, Xoo2860 and Xoo2616, are involved in fine-tuning the in vivo c-di-GMP abundance and also play a role in the regulation of virulence-associated functions. We have further established the importance of the GGDEF domain of Xoo2563, a previously characterized c-di-GMP phosphodiesterase, in the virulence-associated functions of Xoo. Interestingly the strain harbouring the GGDEF domain deletion (ΔXoo2563GGDEF ) exhibited EPS deficiency and hypersensitivity to streptonigrin, indicative of altered iron metabolism. This is in contrast to the phenotype exhibited by an EAL overexpression strain wherein, the ΔXoo2563GGDEF exhibited other phenotypes, similar to the strain overexpressing the EAL domain. Taken together, our results indicate a complex interplay of c-di-GMP signalling with the cell-cell signalling to coordinate virulence-associated function in Xoo.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Doenças das Plantas , Virulência , Xanthomonas
5.
J Exp Bot ; 72(18): 6524-6543, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-33993246

RESUMO

Quorum sensing (QS) helps the Xanthomonas group of phytopathogens to infect several crop plants. The vascular phytopathogen Xanthomonas campestris pv. campestris (Xcc) is the causal agent of black rot disease on Brassicaceae leaves, where a typical v-shaped lesion spans both vascular and mesophyll regions with progressive leaf chlorosis. Recently, the role of QS has been elucidated during Xcc early infection stages. However, a detailed insight into the possible role of QS-regulated bacterial invasion in host chlorophagy during late infection stages remains elusive. In this study, using QS-responsive whole-cell bioreporters of Xcc, we present a detailed chronology of QS-facilitated Xcc colonization in the mesophyll region of cabbage (Brassica oleracea) leaves. We report that QS-enabled localization of Xcc to parenchymal chloroplasts triggers leaf chlorosis and promotion of systemic infection. Our results indicate that the QS response in the Xanthomonas group of vascular phytopathogens maximizes their population fitness across host tissues to trigger stage-specific host chlorophagy and establish a systemic infection.


Assuntos
Brassica , Doenças das Plantas/microbiologia , Percepção de Quorum , Xanthomonas campestris , Brassica/microbiologia , Folhas de Planta/microbiologia , Xanthomonas campestris/patogenicidade
6.
EMBO Rep ; 19(1): 172-186, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29222343

RESUMO

Cellular iron homeostasis is critical for survival and growth. Bacteria employ a variety of strategies to sequester iron from the environment and to store intracellular iron surplus that can be utilized in iron-restricted conditions while also limiting the potential for the production of iron-induced reactive oxygen species (ROS). Here, we report that membrane-derived oligosaccharide (mdo) glucan, an intrinsic component of Gram-negative bacteria, sequesters the ferrous form of iron. Iron-binding, uptake, and localization experiments indicated that both secreted and periplasmic ß-(1,2)-glucans bind iron specifically and promote growth under iron-restricted conditions. Xanthomonas campestris and Escherichia coli mutants blocked in the production of ß-(1,2)-glucan accumulate low amounts of intracellular iron under iron-restricted conditions, whereas they exhibit elevated ROS production and sensitivity under iron-replete conditions. Our results reveal a critical role of glucan in intracellular iron homeostasis conserved in Gram-negative bacteria.


Assuntos
Agrobacterium tumefaciens/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Polissacarídeos Bacterianos/biossíntese , Pseudomonas syringae/metabolismo , Xanthomonas campestris/metabolismo , beta-Glucanas/metabolismo , Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Escherichia coli/genética , Expressão Gênica , Viabilidade Microbiana , Mutagênese , Óperon , Estresse Oxidativo , Pseudomonas syringae/genética , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Sideróforos/biossíntese , Sideróforos/genética , Xanthomonas campestris/genética
7.
PLoS Pathog ; 12(11): e1006019, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27902780

RESUMO

Abilities of bacterial pathogens to adapt to the iron limitation present in hosts is critical to their virulence. Bacterial pathogens have evolved diverse strategies to coordinately regulate iron metabolism and virulence associated functions to maintain iron homeostasis in response to changing iron availability in the environment. In many bacteria the ferric uptake regulator (Fur) functions as transcription factor that utilize ferrous form of iron as cofactor to regulate transcription of iron metabolism and many cellular functions. However, mechanisms of fine-tuning and coordinated regulation of virulence associated function beyond iron and Fur-Fe2+ remain undefined. In this study, we show that a novel transcriptional regulator XibR (named Xanthomonas iron binding regulator) of the NtrC family, is required for fine-tuning and co-coordinately regulating the expression of several iron regulated genes and virulence associated functions in phytopathogen Xanthomonas campestris pv. campestris (Xcc). Genome wide expression analysis of iron-starvation stimulon and XibR regulon, GUS assays, genetic and functional studies of xibR mutant revealed that XibR positively regulates functions involved in iron storage and uptake, chemotaxis, motility and negatively regulates siderophore production, in response to iron. Furthermore, chromatin immunoprecipitation followed by quantitative real-time PCR indicated that iron promoted binding of the XibR to the upstream regulatory sequence of operon's involved in chemotaxis and motility. Circular dichroism spectroscopy showed that purified XibR bound ferric form of iron. Electrophoretic mobility shift assay revealed that iron positively affected the binding of XibR to the upstream regulatory sequences of the target virulence genes, an effect that was reversed by ferric iron chelator deferoxamine. Taken together, these data revealed that how XibR coordinately regulates virulence associated and iron metabolism functions in Xanthomonads in response to iron availability. Our results provide insight of the complex regulatory mechanism of fine-tuning of virulence associated functions with iron availability in this important group of phytopathogen.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Ferro/metabolismo , Virulência/fisiologia , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Proteínas de Bactérias/metabolismo , Imunoprecipitação da Cromatina , Dicroísmo Circular , Ensaio de Desvio de Mobilidade Eletroforética , Estudo de Associação Genômica Ampla , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo , Transcriptoma
8.
Mol Microbiol ; 96(4): 708-27, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25656587

RESUMO

Cell-cell communication mediated by diffusible signal factor (DSF) plays an important role in virulence of several Xanthomonas group of plant pathogens. In the bacterial pathogen of rice, Xanthomonas oryzae pv. oryzicola, DSF is required for virulence and in planta growth. In order to understand the role of DSF in promoting in planta growth and virulence, we have characterized the DSF deficient mutant of X. oryzae pv. oryzicola. Mutant analysis by expression analysis, radiolabelled iron uptake studies and growth under low-iron conditions indicated that DSF positively regulates ferric iron uptake. Further, the DSF deficient mutant of X. oryzae pv. oryzicola exhibited a reduced capacity to use ferric form of iron for growth under low-iron conditions. Exogenous iron supplementation in the rice leaves rescued the in planta growth deficiency of the DSF deficient mutant. These data suggest that DSF promotes in planta growth of X. oryzae pv. oryzicola by positively regulating functions involved in ferric iron uptake which is important for its virulence. Our results also indicate that requirement of iron uptake strategies to utilize either Fe(3+) or Fe(2+) form of iron for colonization may vary substantially among closely related members of the Xanthomonas group of plant pathogens.


Assuntos
Compostos Férricos/metabolismo , Ácidos Láuricos/metabolismo , Interações Microbianas , Oryza/microbiologia , Transdução de Sinais , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Citratos/biossíntese , Compostos Férricos/farmacologia , Regulação Bacteriana da Expressão Gênica , Ligases/genética , Ligases/metabolismo , Mutação , Folhas de Planta/microbiologia , Pirrolidinonas , Virulência/genética , Xanthomonas/genética , Xanthomonas/crescimento & desenvolvimento
9.
Mol Microbiol ; 92(3): 557-69, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24601980

RESUMO

Bacteria co-ordinate their social behaviour in a density-dependent manner by production of diffusible signal molecules by a process known as quorum sensing (QS). It is generally assumed that in homogenous environments and at high cell density, QS synchronizes cells in the population to perform collective social tasks in unison which maximize the benefit at the inclusive fitness of individuals. However, evolutionary theory predicts that maintaining phenotypic heterogeneity in performing social tasks is advantageous as it can serve as a bet-hedging survival strategy. Using Pseudomonas syringae and Xanthomonas campestris as model organisms, which use two diverse classes of QS signals, we show that two distinct subpopulations of QS-responsive and non-responsive cells exist in the QS-activated population. Addition of excess exogenous QS signal does not significantly alter the distribution of QS-responsive and non-responsive cells in the population. We further show that progeny of cells derived from these subpopulations also exhibited heterogeneous distribution patterns similar to their respective parental strains. Overall, these results support the model that bacteria maintain QS-responsive and non-responsive subpopulations at high cell densities in a bet-hedging strategy to simultaneously perform functions that are both positively and negatively regulated by QS to improve their fitness in fluctuating environments.


Assuntos
Pseudomonas syringae/fisiologia , Percepção de Quorum , Xanthomonas campestris/fisiologia , Acil-Butirolactonas/metabolismo , Ácidos Graxos/metabolismo , Fenótipo , Pseudomonas syringae/efeitos dos fármacos , Xanthomonas campestris/efeitos dos fármacos
10.
J Exp Bot ; 66(21): 6697-714, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26248667

RESUMO

Several secreted and surface-associated conserved microbial molecules are recognized by the host to mount the defence response. One such evolutionarily well-conserved bacterial process is the production of cell-cell signalling molecules which regulate production of multiple virulence functions by a process known as quorum sensing. Here it is shown that a bacterial fatty acid cell-cell signalling molecule, DSF (diffusible signal factor), elicits innate immunity in plants. The DSF family of signalling molecules are highly conserved among many phytopathogenic bacteria belonging to the genus Xanthomonas as well as in opportunistic animal pathogens. Using Arabidopsis, Nicotiana benthamiana, and rice as model systems, it is shown that DSF induces a hypersensitivity reaction (HR)-like response, programmed cell death, the accumulation of autofluorescent compounds, hydrogen peroxide production, and the expression of the PATHOGENESIS-RELATED1 (PR-1) gene. Furthermore, production of the DSF signalling molecule in Pseudomonas syringae, a non-DSF-producing plant pathogen, induces the innate immune response in the N. benthamiana host plant and also affects pathogen growth. By pre- and co-inoculation of DSF, it was demonstrated that the DSF-induced plant defence reduces disease severity and pathogen growth in the host plant. In this study, it was further demonstrated that wild-type Xanthomonas campestris suppresses the DSF-induced innate immunity by secreting xanthan, the main component of extracellular polysaccharide. The results indicate that plants have evolved to recognize a widely conserved bacterial communication system and may have played a role in the co-evolution of host recognition of the pathogen and the communication machinery.


Assuntos
Nicotiana/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal , Polissacarídeos Bacterianos/metabolismo , Xanthomonas campestris/genética , Doenças das Plantas/microbiologia , Transdução de Sinais , Nicotiana/microbiologia , Xanthomonas campestris/metabolismo
11.
Mol Plant Microbe Interact ; 27(3): 244-54, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24499029

RESUMO

The rpfF gene from Xylella fastidiosa, encoding the synthase for diffusible signal factor (DSF), was expressed in 'Freedom' grape to reduce the pathogen's growth and mobility within the plant. Symptoms in such plants were restricted to near the point of inoculation and incidence of disease was two- to fivefold lower than in the parental line. Both the longitudinal and lateral movement of X. fastidiosa in the xylem was also much lower. DSF was detected in both leaves and xylem sap of RpfF-expressing plants using biological sensors, and both 2-Z-tetradecenoic acid, previously identified as a component of X. fastidiosa DSF, and cis-11-methyl-2-dodecenoic acid were detected in xylem sap using electrospray ionization mass spectrometry. A higher proportion of X. fastidiosa cells adhered to xylem vessels of the RpfF-expressing line than parental 'Freedom' plants, reflecting a higher adhesiveness of the pathogen in the presence of DSF. Disease incidence in RpfF-expressing plants in field trials in which plants were either mechanically inoculated with X. fastidiosa or subjected to natural inoculation by sharpshooter vectors was two- to fourfold lower in than that of the parental line. The number of symptomatic leaves on infected shoots was reduced proportionally more than the incidence of infection, reflecting a decreased ability of X. fastidiosa to move within DSF-producing plants.


Assuntos
Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Vitis/microbiologia , Xylella/fisiologia , Animais , Proteínas de Bactérias/genética , Adesão Celular , Suscetibilidade a Doenças , Ácidos Graxos Monoinsaturados/análise , Ácidos Graxos Monoinsaturados/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde , Mutação , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/estatística & dados numéricos , Raízes de Plantas/imunologia , Raízes de Plantas/microbiologia , Brotos de Planta/imunologia , Brotos de Planta/microbiologia , Plantas Geneticamente Modificadas , Espectrometria de Massas por Ionização por Electrospray , Virulência , Vitis/imunologia , Xylella/genética , Xylella/patogenicidade , Xilema/imunologia , Xilema/microbiologia
12.
mBio ; 14(4): e0136123, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37498088

RESUMO

Xanthomonas campestris is an important member of the Xanthomonas group of phytopathogens that causes diseases in crucifers. In X. campestris, several virulence-associated functions, including some belonging to unknown predicted functions, have been implicated in the colonization and disease processes. However, the role of many of these unknown predicted proteins in Xanthomonas-host interaction and their exact physiological function is not clearly known. In this study, we identified a novel membrane-associated protein belonging to the DedA super family, XdfA, which is required for virulence in X. campestris. The DedA family of proteins are generally ubiquitous in bacteria; however, their function and actual physiological role are largely elusive. Characterization of ∆xdfA by homology modeling, membrane localization, and physiological studies indicated that XdfA is a membrane-associated protein that plays a role in the maintenance of membrane integrity. Furthermore, functional homology modeling analysis revealed that the XdfA exhibits structural similarity to a CorA-like magnesium transporter and is required for optimum growth under low magnesium ion concentration. We report for the first time that a putative DedA family of protein in Xanthomonas is required for optimum virulence and plays a role in the maintenance of membrane-associated functions and magnesium homeostasis. IMPORTANCE Bacterial DedA family proteins are involved in a range of cellular processes such as ion transport, signal transduction, and cell division. Here, we have discussed about a novel DedA family protein XdfA in Xanthomonas campestris pv. campestris that has a role in membrane homeostasis, magnesium transport, and virulence. Understanding membrane and magnesium homeostasis will aid in our comprehension of bacterial physiology and eventually will help us devise effective antimicrobial strategies to safeguard horticulturally and agriculturally important crop plants.


Assuntos
Xanthomonas campestris , Xanthomonas , Virulência , Xanthomonas campestris/genética , Magnésio , Proteínas de Membrana , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Xanthomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Doenças das Plantas/microbiologia
13.
Trends Microbiol ; 31(1): 36-50, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35941062

RESUMO

While most bacteria are unicellular microbes they communicate with each other and with their environments to adapt their behaviors. Quorum sensing (QS) is one of the best-studied cell-cell communication modes. QS signaling is not restricted to bacterial cell-to-cell communication - it also allows communication between bacteria and their eukaryotic hosts. The diffusible signal factor (DSF) family represents an intriguing type of QS signal with multiple roles found in diverse Gram-negative bacteria. Over the last decade, extensive progress has been made in understanding DSF-mediated communication among bacteria, fungi, insects, plants, and zebrafish. This review provides an update on these new developments with the aim of building a more comprehensive picture of DSF-mediated intraspecies, interspecies, and inter-kingdom communication.


Assuntos
Percepção de Quorum , Peixe-Zebra , Animais , Bactérias/genética , Bactérias Gram-Negativas
14.
Mol Plant Microbe Interact ; 25(9): 1157-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22571817

RESUMO

By screening a transposon-induced mutant library of Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, we have identified a novel 5.241-kb open reading frame (ORF) named xadM that is required for optimum virulence and colonization. This ORF encodes a protein, XadM, of 1,746 amino acids that exhibits significant similarity to Rhs family proteins. The XadM protein contains several repeat domains similar to a wall-associated surface protein of Bacillus subtilis, which has been proposed to be involved in carbohydrate binding. The role of XadM in X. oryzae pv. oryzae adhesion was demonstrated by the impaired ability of an xadM mutant strain to attach and form biofilms. Furthermore, we show that XadM is exposed on the cell surface and its expression is regulated by growth conditions and plays an important role in the early attachment and entry inside rice leaves. Interestingly, XadM homologs are present in several diverse bacteria, including many Xanthomonas spp. and animal-pathogenic bacteria belonging to Burkholderia spp. This is the first report of a role for XadM, an Rhs family protein, in adhesion and virulence of any pathogenic bacteria.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Xanthomonas/metabolismo , Adesinas Bacterianas/genética , Aderência Bacteriana , Proteínas de Bactérias/genética , Mutação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência , Xanthomonas/genética , Xanthomonas/patogenicidade , Xanthomonas/fisiologia
15.
Mol Plant Microbe Interact ; 25(6): 789-801, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22352717

RESUMO

In Xanthomonas oryzae pv. oryzae, the bacterial blight pathogen of rice, a secreted fatty acid signaling molecule known as diffusible signal factor (DSF) is required for virulence and growth on low-iron medium. To identify other virulence-associated traits that are regulated by DSF in this pathogen, we have performed microarray analysis of transcriptional changes between the wild type and DSF-deficient mutants of X. oryzae pv. oryzae. Expression of genes that encode secreted hydrolytic enzymes, motility, and chemotaxis functions are negatively regulated by DSF while functions involved in adhesion and biofilm formation are positively regulated. Enzymatic assays for hydrolytic enzymes as well as assays for chemotaxis, motility, attachment, and biofilm formation corroborate these findings. These results demonstrate that, in X. oryzae pv. oryzae, DSF-mediated cell-to-cell signaling coordinates transition from solitary to biofilm lifestyle by promoting expression of attachment functions and negatively regulating expression of motility functions. This is in contrast to X. campestris pv. campestris, a pathogen of crucifers, wherein the DSF system positively regulates motility functions and negatively regulates biofilm formation. These results indicate that virulence-associated functions can be regulated in a completely contrasting fashion by the same signaling system in very closely related bacteria.


Assuntos
Regulação Bacteriana da Expressão Gênica/fisiologia , Transdução de Sinais/fisiologia , Xanthomonas/metabolismo , Xanthomonas/patogenicidade , Biofilmes , Quimiotaxia , Perfilação da Expressão Gênica , Movimento , Virulência
16.
Mol Plant Microbe Interact ; 25(4): 453-62, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22204646

RESUMO

In Xylella fastidiosa the fatty acid signal molecule diffusible signaling factor (DSF) is produced and sensed by components of the regulation of pathogenicity factors (rpf) cluster; lack of DSF production in RpfF mutants results in a non-vector-transmissible phenotype yet cells are hypervirulent to grape. rpfB has not been characterized in Xylella fastidiosa, although its homolog has been suggested to be required for DSF synthesis in Xanthomonas campestris pv. campestris. We show that RpfB is involved in DSF processing in both Xylella fastidiosa and Xanthomonas campestris, affecting the profile of DSF-like fatty acids observed in thin-layer chromatography. Although three fatty acids whose production is dependent on RpfF were detected in Xylella fastidiosa and Xanthomonas campestris wild-type strains, their respective rpfB mutants accumulated primarily one chemical species. Although no quantifiable effect of rpfB on plant colonization by Xylella fastidiosa was found, insect colonization and transmission was reduced. Thus, RpfB apparently is involved in DSF processing, and like Xanthomonas campestris, Xylella fastidiosa also produces multiple DSF molecules. It is possible that Xylella fastidiosa coordinates host vector and plant colonization by varying the proportions of different forms of DSF signals via RpfB.


Assuntos
Xylella/metabolismo , Xylella/fisiologia , Sequência de Aminoácidos , Ácidos Graxos/biossíntese , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Mutação , Doenças das Plantas/microbiologia , Transdução de Sinais/fisiologia , Virulência , Xanthomonas campestris/metabolismo , Xylella/patogenicidade
17.
Mol Plant Pathol ; 23(1): 118-132, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704368

RESUMO

The Xanthomonas group of phytopathogens communicate with a fatty acid-like cell-cell signalling molecule, cis-11-2-methyl-dodecenoic acid, also known as diffusible signal factor (DSF). In the pathogen of rice, Xanthomonas oryzae pv. oryzae, DSF is involved in the regulation of several virulence-associated functions, including production and secretion of several cell wall hydrolysing type II secretion effectors. To understand the role of DSF in the secretion of type II effectors, we characterized DSF synthase-deficient (rpfF) and DSF-deficient, type II secretion (xpsE) double mutants. Mutant analysis by expression analysis, secretion assay, fatty acid analysis, and physiological studies indicated that rpfF mutants exhibit hypersecretion of several type II effectors due to a perturbed membrane and DSF is required for maintaining membrane integrity. The rpfF mutants exhibited significantly higher uptake of 1-N-phenylnapthylamine and ethidium bromide, and up-regulation of rpoE (σE ). Increasing the osmolarity of the medium could rescue the hypersecretion phenotype of the rpfF mutant. The rpfF mutant exhibited highly reduced virulence. We report for the first time that in X. oryzae pv. oryzae RpfF is involved in the maintenance of membrane integrity by playing a regulatory role in the fatty acid synthesis pathway.


Assuntos
Regulação Bacteriana da Expressão Gênica , Xanthomonas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação/genética , Doenças das Plantas , Virulência , Xanthomonas/genética , Xanthomonas/metabolismo
18.
Mol Plant Microbe Interact ; 24(9): 1086-101, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21615204

RESUMO

Xanthomonas oryzae pv. oryzicola, the causal agent of bacterial leaf streak in the model plant rice, possesses a hypersensitive response and pathogenicity (hrp), hrp-conserved (hrc), hrp-associated (hpa) cluster (hrp-hrc-hpa) that encodes a type III secretion system (T3SS) through which T3SS effectors are injected into host cells to cause disease or trigger plant defenses. Mutations in this cluster usually abolish the bacterial ability to cause hypersensitive response in nonhost tobacco and pathogenicity in host rice. In Xanthomonas spp., these genes are generally assumed to be regulated by the key master regulators HrpG and HrpX. However, we present evidence that, apart from HrpG and HrpX, HrpD6 is also involved in regulating the expression of hrp genes. Interestingly, the expression of hpa2, hpa1, hpaB, hrcC, and hrcT is positively controlled by HrpD6. Transcriptional expression assays demonstrated that the expression of the hrcC, hrpD5, hrpE, and hpa3 genes was not completely abolished by hrpG and hrpX mutations. As observed in analysis of their corresponding mutants, HrpG and HrpX exhibit contrasting gene regulation, particularly for hpa2 and hrcT. Other two-component system regulators (Zur, LrpX, ColR/S, and Trh) did not completely inhibit the expression of hrcC, hrpD5, hrpE, and hpa3. Immunoblotting assays showed that the secretion of HrpF, which is an HpaB-independent translocator, is not affected by the mutation in hrpD6. However, the mutation in hrpD6 affects the secretion of an HpaB-dependent TAL effector, AvrXa27. These novel findings suggest that, apart from HrpG and HrpX, HrpD6 plays important roles not only in the regulation of hrp genes but also in the secretion of TAL effectors.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Proteínas de Bactérias/genética , Células Cultivadas , DNA Bacteriano/genética , Genes Bacterianos/genética , Genes Reguladores/genética , Genes Reporter , Teste de Complementação Genética , Família Multigênica/genética , Óperon/genética , Oryza/microbiologia , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , Plântula/microbiologia , Deleção de Sequência , Transcrição Gênica , Virulência , Xanthomonas/metabolismo , Xanthomonas/patogenicidade
19.
Proc Natl Acad Sci U S A ; 105(7): 2670-5, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18268318

RESUMO

Cell-cell signaling in Xylella fastidiosa, a xylem-colonizing plant pathogenic bacterium, mediated by a fatty acid Diffusible Signaling Factor (DSF), is required to colonize insect vectors and to suppress virulence to grape. Here, we show that a hybrid two-component regulatory protein RpfC is involved in negative regulation of DSF synthesis by RpfF in X. fastidiosa. X. fastidiosa rpfC mutants hyperexpress rpfF and overproduce DSF and are deficient in virulence and movement in the xylem vessels of grape. The expression of the genes encoding the adhesins FimA, HxfA, and HxfB is much higher in rpfC mutants, which also exhibit a hyperattachment phenotype in culture that is associated with their inability to migrate in xylem vessels and cause disease. rpfF mutants deficient in DSF production have the opposite phenotypes for all of these traits. RpfC is also involved in the regulation of other signaling components including rpfG, rpfB, a GGDEF domain protein that may be involved in intracellular signaling by modulating the levels of cyclic-di-GMP, and the virulence factors tolC and pglA required for disease. rpfC mutants are able to colonize the mouthparts of insect vectors and wild-type strains but are not transmitted as efficiently to new host plants, apparently because of their high levels of adhesiveness. Because of the conflicting contributions of adhesiveness and other traits to movement within plants and vectoring to new host plants, X. fastidiosa apparently coordinates these traits in a population-size-dependent fashion involving accumulation of DSF.


Assuntos
Comunicação Celular , Insetos Vetores/microbiologia , Insetos , Doenças das Plantas/microbiologia , Transdução de Sinais , Xylella/patogenicidade , Adesinas Bacterianas/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Mutação/genética , Fenótipo , Virulência , Xylella/metabolismo
20.
Mol Plant Microbe Interact ; 23(10): 1356-63, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20831412

RESUMO

Xylella fastidiosa must coordinately regulate a variety of traits contributing to biofilm formation, host plant and vector colonization, and transmission between plants. Traits such as production of extracellular polysaccharides (EPS), adhesins, extracellular enzymes, and pili are expressed in a cell-density-dependent fashion mediated by a cell-to-cell signaling system involving a fatty acid diffusible signaling factor (DSF). The expression of gene PD0279 (which has a GGDEF domain) is downregulated in the presence of DSF and may be involved in intracellular signaling by modulating the levels of cyclic di-GMP. PD0279, designated cyclic di-GMP synthase A (cgsA), is required for biofilm formation, plant virulence, and vector transmission. cgsA mutants exhibited a hyperadhesive phenotype in vitro and overexpressed gumJ, hxfA, hxfB, xadA, and fimA, which promote attachment of cells to surfaces and, hence, biofilm formation. The mutants were greatly reduced in virulence to grape albeit still transmissible by insect vectors, although at a reduced level compared with transmission rates of the wild-type strain, despite the fact that similar numbers of cells of the cgsA mutant were acquired by the insects from infected plants. High levels of EPS were measured in cgsA mutants compared with wild-type strains, and scanning electron microscopy analysis also revealed a thicker amorphous layer surrounding the mutants. Overexpression of cgsA in a cgsA-complemented mutant conferred the opposite phenotypes in vitro. These results suggest that decreases of cyclic di-GMP result from the accumulation of DSF as cell density increases, leading to a phenotypic transition from a planktonic state capable of colonizing host plants to an adhesive state that is insect transmissible.


Assuntos
Biofilmes , Hemípteros/microbiologia , Doenças das Plantas/microbiologia , Vitis/microbiologia , Xylella/metabolismo , Animais , Regulação Bacteriana da Expressão Gênica/fisiologia , Hemípteros/fisiologia , Mutação , Virulência , Xylella/genética , Xylella/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA