Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Neurosci ; 57(12): 2149-2159, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36300727

RESUMO

Neurological outcome after ischemic stroke depends on residual salvageable brain tissue at the time of recanalization. Head down tilt 15° (HDT15) was proven effective in reducing infarct size and improving functional outcome in rats with transient middle cerebral artery occlusion (t-MCAO) by increasing cerebral perfusion within the ischemic penumbra. In this pooled analysis, individual animal-level data from three experimental series were combined in a study population of 104 t-MCAO rats (45 in HDT15 group and 59 in flat position group). Co-primary outcomes were infarct size and functional outcome at 24 h in both groups. The secondary outcome was hemodynamic change induced by HDT15 in ischemic and non-ischemic hemispheres in a subgroup of animals. Infarct size at 24 h was smaller in HDT15 group than in flat position group (absolute mean difference 31.69 mm3 , 95% CI 9.1-54.2, Cohen's d 0.56, p = 0.006). Functional outcome at 24 h was better in HDT15 group than in flat position group (median [IQR]: 13[10-16] vs. 11), with a shift in the distribution of the neurobehavioural scores in favour of HDT15. Mean cerebral perfusion in the ischemic hemisphere was higher during HDT15 than before its application (Perfusion Unit [P.U.], mean ± SD: 52.5 ± 19.52 P.U. vs. 41.25 ± 14.54 P.U., mean of differences 13.36, 95% CI 7.5-19.18, p = 0.0002). Mean cerebral perfusion in the non-ischemic hemisphere before and during HDT15 was unchanged (P.U., mean ± SD: 94.1 ± 33.8 P.U. vs. 100.25 ± 25.34 P.U., mean of differences 3.95, 95%, CI -1.9 to 9.6, p = 0.1576). This study confirmed that HDT15 improves the outcome in t-MCAO rats by promoting cerebral perfusion in the ischemic territory, without disrupting hemodynamics in non-ischemic areas.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Decúbito Inclinado com Rebaixamento da Cabeça , Encéfalo , Infarto da Artéria Cerebral Média , Hemodinâmica
2.
Eur J Nucl Med Mol Imaging ; 49(1): 201-220, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34387719

RESUMO

PURPOSE: The prototypical TSPO radiotracer (R)-[11C]PK11195 has been used in humans for more than thirty years to visualize neuroinflammation in several pathologies. Alternative radiotracers have been developed to improve signal-to-noise ratio and started to be tested clinically in 2008. Here we examined the scientific value of these "(R)-[11C]PK11195 challengers" in clinical research to determine if they could supersede (R)-[11C]PK11195. METHODS: A systematic MEDLINE (PubMed) search was performed (up to end of year 2020) to extract publications reporting TSPO PET in patients with identified pathologies, excluding studies in healthy subjects and methodological studies. RESULTS: Of the 288 publications selected, 152 used 13 challengers, and 142 used (R)-[11C]PK11195. Over the last 20 years, the number of (R)-[11C]PK11195 studies remained stable (6 ± 3 per year), but was surpassed by the total number of challenger studies for the last 6 years. In total, 3914 patients underwent a TSPO PET scan, and 47% (1851 patients) received (R)-[11C]PK11195. The 2 main challengers were [11C]PBR28 (24%-938 patients) and [18F]FEPPA (11%-429 patients). Only one-in-ten patients (11%-447) underwent 2 TSPO scans, among whom 40 (1%) were scanned with 2 different TSPO radiotracers. CONCLUSIONS: Generally, challengers confirmed disease-specific initial (R)-[11C]PK11195 findings. However, while their better signal-to-noise ratio seems particularly useful in diseases with moderate and widespread neuroinflammation, most challengers present an allelic-dependent (Ala147Thr polymorphism) TSPO binding and genetic stratification is hindering their clinical implementation. As new challengers, insensitive to TSPO human polymorphism, are about to enter clinical evaluation, we propose this systematic review to be regularly updated (living review).


Assuntos
Isoquinolinas , Tomografia por Emissão de Pósitrons , Encéfalo/metabolismo , Humanos , Cintilografia , Receptores de GABA/genética , Receptores de GABA/metabolismo , Razão Sinal-Ruído
3.
NMR Biomed ; 33(1): e4174, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696585

RESUMO

Several biological processes are involved in dementia, and fibrillar aggregation of misshaped endogenous proteins appears to be an early hallmark of neurodegenerative disease. A recently developed means of studying neurodegenerative diseases is magnetic resonance elastography (MRE), an imaging technique investigating the mechanical properties of tissues. Although mechanical changes associated with these diseases have been detected, the specific signal of fibrils has not yet been isolated in clinical or preclinical studies. The current study aims to exploit the fractal-like properties of fibrils to separate them from nonaggregated proteins using a multi-frequency MRE power law exponent in a phantom study. Two types of fibril, α-synuclein (α-Syn) and amyloid-ß (Aß), and a nonaggregated protein, bovine serum albumin, used as control, were incorporated in a dedicated nondispersive agarose phantom. Elastography was performed at multiple frequencies between 400 and 1200 Hz. After 3D-direct inversion, storage modulus (G'), phase angle (ϕ), wave speed and the power law exponent (y) were computed. No significant changes in G' and ϕ were detected. Both α-Syn and Aß inclusions showed significantly higher y values than control inclusions (P = 0.005) but did not differ between each other. The current phantom study highlighted a specific biomechanical effect of α-Syn and Aß aggregates, which was better captured with the power law exponent derived from multi-frequency MRE than with single frequency-derived parameters.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Técnicas de Imagem por Elasticidade , Agregados Proteicos , alfa-Sinucleína/metabolismo , Animais , Bovinos , Elasticidade , Fluorescência , Humanos , Imagens de Fantasmas , Soroalbumina Bovina/química
4.
Mol Pharm ; 15(8): 3153-3166, 2018 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-29989823

RESUMO

Accumulation of α-synuclein (α-syn) is a neuropathological hallmark of synucleinopathies. To date, no selective α-syn positron emission tomography (PET) radiotracer has been identified. Our objective was to develop the first original, selective, and specific α-syn PET radiotracer. Chemical design inspired from three structural families that demonstrated interesting α-syn binding characteristics was used as a starting point. Bioinformatics modeling of α-syn fibrils was then employed to select the best molecular candidates before their syntheses. An in vitro binding assay was performed to evaluate the affinity of the compounds. Radiotracer specificity and selectivity were assessed by in vitro autoradiography and in vivo PET studies in animal (rodents) models. Finally, gold standard in vitro autoradiography with patients' postmortem tissues was performed to confirm/infirm the α-syn binding characteristics. Two compounds exhibited a good brain availability and bound to α-syn and Aß fibrils in a rat model. In contrast, no signal was observed in a mouse model of synucleinopathy. Experiments in human tissues confirmed these negative results.


Assuntos
Encéfalo/diagnóstico por imagem , Doença de Parkinson/diagnóstico por imagem , Compostos Radiofarmacêuticos/administração & dosagem , alfa-Sinucleína/metabolismo , Animais , Autorradiografia/métodos , Disponibilidade Biológica , Encéfalo/citologia , Encéfalo/patologia , Modelos Animais de Doenças , Desenho de Fármacos , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/química , Radioisótopos de Flúor/farmacocinética , Humanos , Corpos de Lewy/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Simulação de Acoplamento Molecular , Doença de Parkinson/genética , Doença de Parkinson/patologia , Tomografia por Emissão de Pósitrons/métodos , Ligação Proteica , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Ratos , Ratos Sprague-Dawley , alfa-Sinucleína/genética
5.
J Physiol ; 594(23): 6969-6985, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27641234

RESUMO

KEY POINTS: Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE-/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE-/- mice. ABSTRACT: Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE-/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE-/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 µmol mg-1 ; P < 0.01) and inflammation (interleukin-1ß, 226.8 ± 27.1 vs. 182.5 ± 21.5 pg mg-1 ; P < 0.05) in the brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain markers. Highly localized vascular brain damage is a frequent finding in this ageing atherosclerosis model, and exercise is able to reduce this outcome and improve lifespan. In vivo MRI evaluated both the neurovascular damage and the protective effect of exercise.


Assuntos
Encéfalo/patologia , Dieta Hiperlipídica , Condicionamento Físico Animal , Envelhecimento/fisiologia , Animais , Aorta/diagnóstico por imagem , Aorta/metabolismo , Apolipoproteínas E/genética , Biomarcadores/sangue , Biomarcadores/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Catalase/metabolismo , Colesterol/sangue , Feminino , Glutationa Peroxidase/metabolismo , Inflamação/sangue , Inflamação/metabolismo , Inflamação/patologia , Inflamação/terapia , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Imageamento por Ressonância Magnética , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nitratos/metabolismo , Nitritos/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
6.
Eur Radiol ; 26(12): 4505-4514, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26984433

RESUMO

OBJECTIVES: To assess spatiotemporal brain infarction evolution by sequential multimodal magnetic resonance (MR) imaging in an endovascular model of acute stroke in rats. MATERIALS AND METHODS: A microwire was selectively placed in the middle cerebral artery (MCA) in 16 consecutives rats during 90 minutes occlusion. Longitudinal 7-T MR imaging, including angiography, diffusion, and perfusion was performed during ischemia, immediately after reperfusion, 3 h and 24 h after subsequent reperfusion. RESULTS: MCA occlusion was complete in 75 % and partial in 18.7 %. Hypoperfusion (mean ± SD) was observed in all animals during ischemia (-59 ± 18 % of contralateral hemisphere, area 31 ± 5 mm2). Infarction volume (mean ± SD) was 90 ± 64 mm3 during ischemia and 57 ± 67 mm3 at 24 h. Brain infarction was fronto-parietal cortical in five animals (31 %), striatal in four animals (25 %), and cortico-striatal in seven animals (44 %) at 24 h. All rats survived at 24 h. CONCLUSION: This model is suitable to neuroprotection studies because of possible acute and close characterization of spatiotemporal evolution of brain infarction by MR imaging techniques, and evidence of ischemic penumbra, the target of neuroprotection agents. However, optimization of the brain infarct reproducibility needs further technical and neurointerventional tools improvements. KEY POINTS: • Nitinol microwire is MRI compatible allowing spatiotemporal characterization of brain infarction in rats. • Microwire selective placement in middle cerebral artery allows complete artery occlusion in 75 %. • A diffusion/perfusion mismatch during arterial occlusion is observed in 77 % of rats.


Assuntos
Arteriopatias Oclusivas/diagnóstico por imagem , Isquemia Encefálica/diagnóstico por imagem , Infarto da Artéria Cerebral Média/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Imagem Multimodal , Perfusão , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Acidente Vascular Cerebral/patologia
7.
Neurobiol Dis ; 74: 305-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25484287

RESUMO

Intracranial collaterals are dynamically recruited after arterial occlusion and are emerging as a strong determinant of tissue outcome in both human and experimental ischemic stroke. The relationship between collateral flow and ischemic penumbra remains largely unexplored in pre-clinical studies. The aim of the present study was to investigate the pattern of collateral flow with regard to penumbral tissue after transient middle cerebral artery (MCA) occlusion in rats. MCA was transiently occluded (90min) by intraluminal filament in adult male Wistar rats (n=25). Intracranial collateral flow was studied in terms of perfusion deficit and biosignal fluctuation analyses using multi-site laser Doppler monitoring. Molecular penumbra was defined by topographical mapping and quantitative signal analysis of Heat Shock Protein 70kDa (HSP70) immunohistochemistry. Functional deficit and infarct volume were assessed 24h after ischemia induction. The results show that functional performance of intracranial collaterals during MCA occlusion inversely correlated with HSP70 immunoreactive areas in both the cortex and the striatum, as well as with infarct size and functional deficit. Intracranial collateral flow was associated with reduced areas of both molecular penumbra and ischemic core and increased areas of intact tissue in rats subjected to MCA occlusion followed by reperfusion. Our findings prompt the development of collateral therapeutics to provide tissue-saving strategies in the hyper-acute phase of ischemic stroke prior to recanalization therapy.


Assuntos
Isquemia Encefálica/fisiopatologia , Córtex Cerebral/fisiopatologia , Circulação Cerebrovascular/fisiologia , Corpo Estriado/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Animais , Antígenos Nucleares/metabolismo , Isquemia Encefálica/patologia , Artérias Carótidas/fisiopatologia , Doenças das Artérias Carótidas , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Proteínas de Choque Térmico HSP70/metabolismo , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Fluxometria por Laser-Doppler , Masculino , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Índice de Gravidade de Doença , Acidente Vascular Cerebral/patologia
8.
Cerebrovasc Dis ; 38(4): 268-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401979

RESUMO

BACKGROUND: Since thrombolysis is the only approved intervention for ischemic stroke, improving its efficacy and safety is a therapeutic aim of considerable interest. The activated form of thrombin activatable fibrinolysis inhibitor (TAFI) has antifibrinolytic effects, and inhibition of TAFI might thus favor recanalization. The present study compared efficacy between TAFI inhibition alone and TAFI inhibition in combination with rtPA at a suboptimal dose, in a murine model of thromboembolic stroke. METHODS: Focal ischemia was induced in mice by thrombin injection in the middle cerebral artery. Animals were placed within the magnet immediately after surgery for baseline MRI (H0). MRI examination comprised diffusion-weighted imaging (DWI), perfusion-weighted imaging (PWI), and T2-weighted imaging (T2-WI). Animals were randomly assigned to 1 of 5 treatment groups: saline, rtPA 5 mg/kg (tPA(5): suboptimal or low dose), rtPA 10 mg/kg (tPA(10): standard dose), TAFI-I 100 mg/kg (TAFI-I), and rtPA 5 mg/kg + TAFI-I 100 mg/kg (tPA(5) + TAFI-I). Treatments were administered inside the magnet, via a catheter placed in the tail vein, using a power injector, as 10% bolus and 90% infusion over a period of 20 min. MRI examination was repeated at 3 h (H3) and 24 h (H24) after surgery. Therapeutic benefit was evaluated by: (1) improvement of reperfusion and (2) reduction in final lesion size. Microhemorrhages were assessed as black spots on T2-WI at H24. Animals were sacrificed after the last MR examination. The surgeon and all investigators were blinded to treatment allocation. RESULTS: A total of 104 mice were operated on. Forty four of these were excluded from the study and 27 from the analysis, according to a priori defined criteria (no lesion or no mismatch), leading to the following distribution: saline (n = 6), tPA(5) (n = 8), tPA(10) (n = 7), TAFI-I (n = 7), and TAFI-I + tPA(5) (n = 5). Standard-dose rtPA treatment (tPA(10)) significantly improved lesion regression between H0 and H24 compared to saline (-57 ± 18% vs. -36 ± 21%, p = 0.03), which treatment with rtPA(5) or TAFI-I alone did not. On the other hand, combined treatment with tPA(5) + TAFI-I showed only a trend toward lesion regression (-49 ± 26%), similarly to treatment with tPA(10), but not significantly different from saline (p = 0.46). Nine animals showed microhemorrhage on T2-WI at H24. These animals were evenly distributed between groups. CONCLUSIONS: The present study showed that the combination of TAFI-I with a suboptimal dose of rtPA is not as effective as the standard dose of rtPA, while TAFI inhibition alone is not effective at all. The thromboembolic model is of particular interest in assessing rtPA association to improve thrombolysis, especially when coupled with longitudinal MRI assessment.


Assuntos
Carboxipeptidase B2/antagonistas & inibidores , Inibidores Enzimáticos/uso terapêutico , Fibrinolíticos/administração & dosagem , Infarto da Artéria Cerebral Média/tratamento farmacológico , Tromboembolia/tratamento farmacológico , Terapia Trombolítica , Ativador de Plasminogênio Tecidual/administração & dosagem , Animais , Carboxipeptidase B2/sangue , Circulação Cerebrovascular/efeitos dos fármacos , Imagem de Difusão por Ressonância Magnética , Modelos Animais de Doenças , Quimioterapia Combinada , Infarto da Artéria Cerebral Média/sangue , Infarto da Artéria Cerebral Média/induzido quimicamente , Infarto da Artéria Cerebral Média/patologia , Infarto da Artéria Cerebral Média/fisiopatologia , Masculino , Camundongos , Imagem de Perfusão/métodos , Proteínas Recombinantes/administração & dosagem , Trombina , Tromboembolia/sangue , Tromboembolia/induzido quimicamente , Tromboembolia/patologia , Tromboembolia/fisiopatologia
9.
NMR Biomed ; 26(2): 115-23, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22730167

RESUMO

The broad aim underlying the present research was to investigate the distribution and homing of bone marrow-derived macrophages in a rodent model of transient middle cerebral artery occlusion using MRI and ultrasmall superparamagnetic iron oxide (USPIO) to magnetically label bone marrow-derived macrophages. The specific aim was to assess the intra-carotid infusion route for bone marrow-derived macrophage delivery at reperfusion. Fifteen Sprague-Dawley rats sustained 1 h of middle cerebral artery occlusion. USPIO-labeled bone marrow-derived macrophages were slowly injected for 5 min immediately after reperfusion in ischemic animals (n=7), 1 h after the end of surgery in sham animals (n=5) and very shortly after anesthesia in healthy animals (n=3). Multiparametric MRI was performed at day 0, just after cell administration, and repeated at day 1. Immunohistological analysis included Prussian blue for iron detection and rat endothelial cell antigen-1 for endothelium visualization. Intra-carotid cell delivery brought a large number of cells to the ipsilateral hemisphere of the brain, as seen on both MRI and immunohistology. However, it was associated with high mortality (50%). The study of sham animals demonstrated that intra-carotid cell delivery could induce ischemic lesions and may thus favor additional brain damage. The present study highlights severe drawbacks to the intra-carotid delivery of macrophages at the time of reperfusion in this rodent model of transient cerebral ischemia. Multiparametric MRI appears to be a method of choice to monitor longitudinally the effects of cell infusion, allowing the assessment of both cell fate with the help of magnetic labeling and of potential tissue damage.


Assuntos
Artérias Carótidas/citologia , Rastreamento de Células/métodos , Ataque Isquêmico Transitório/patologia , Ataque Isquêmico Transitório/cirurgia , Macrófagos/citologia , Macrófagos/transplante , Imageamento por Ressonância Magnética/métodos , Animais , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Resultado do Tratamento
10.
Eur Radiol ; 23(1): 37-47, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22833303

RESUMO

OBJECTIVES: This study sought to evaluate whether the therapeutic effects of an anti-inflammatory drug such as minocycline could be monitored by serial ultrasmall superparamagnetic particles of iron oxide (USPIO)-enhanced MRI in experimental stroke. METHODS: Mice received a three-dose minocycline treatment (n = 12) or vehicle (n = 12) after permanent middle cerebral artery occlusion. USPIOs were administered 5 h post-surgery. MRI was performed before, 24 h and 48 h post-USPIO administration. MRI endpoints were the extent of signal abnormalities on R2 maps (=1/T2) and quantitative R2 changes over time (∆R2). Post-mortem brains were prepared either for immunohistology (n = 16) or for iron dosage (n = 8). RESULTS: As expected, treatment with minocycline significantly reduced infarct size, blood-brain barrier permeability and F4/80 immunostaining for microglia/macrophages. Areas of R2 maps > 35 ms(-1) also appeared significantly decreased in minocycline-treated mice (ANOVA for repeated measures, P = 0.017). There was a fair correlation between these areas and the amount of iron in the brain (R(2) = 0.69, P = 0.010), but no significant difference in ∆R2 was found between the two groups. CONCLUSIONS: This study showed that the extent of signal abnormalities on R2 maps can be used as a surrogate marker to detect minocycline effects in a murine experimental model of stroke.


Assuntos
Imageamento por Ressonância Magnética/métodos , Minociclina/farmacologia , Acidente Vascular Cerebral/tratamento farmacológico , Análise de Variância , Animais , Meios de Contraste , Dextranos , Modelos Animais de Doenças , Nanopartículas de Magnetita , Camundongos , Minociclina/administração & dosagem
11.
Front Neurosci ; 17: 1141615, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034159

RESUMO

To improve our understanding of the brain microstructure, high-resolution 3D imaging is used to complement classical 2D histological assessment techniques. X-ray computed tomography allows high-resolution 3D imaging, but requires methods for enhancing contrast of soft tissues. Applying contrast-enhancing staining agents (CESAs) ameliorates the X-ray attenuating properties of soft tissue constituents and is referred to as contrast-enhanced computed tomography (CECT). Despite the large number of chemical compounds that have successfully been applied as CESAs for imaging brain, they are often toxic for the researcher, destructive for the tissue and without proper characterization of affinity mechanisms. We evaluated two sets of chemically related CESAs (organic, iodinated: Hexabrix and CA4+ and inorganic polyoxometalates: 1:2 hafnium-substituted Wells-Dawson phosphotungstate and Preyssler anion), for CECT imaging of healthy murine hemispheres. We then selected the CESA (Hexabrix) that provided the highest contrast between gray and white matter and applied it to a cuprizone-induced demyelination model. Differences in the penetration rate, effect on tissue integrity and affinity for tissue constituents have been observed for the evaluated CESAs. Cuprizone-induced demyelination could be visualized and quantified after Hexabrix staining. Four new non-toxic and non-destructive CESAs to the field of brain CECT imaging were introduced. The added value of CECT was shown by successfully applying it to a cuprizone-induced demyelination model. This research will prove to be crucial for further development of CESAs for ex vivo brain CECT and 3D histopathology.

12.
Acta Biomater ; 170: 260-272, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37574159

RESUMO

Amyloid-ß (Aß) plaques from Alzheimer's Disease (AD) can be visualized ex vivo in label-free brain samples using synchrotron X-ray phase-contrast tomography (XPCT). However, for XPCT to be useful as a screening method for amyloid pathology, it is essential to understand which factors drive the detection of Aß plaques. The current study was designed to test the hypothesis that Aß-related contrast in XPCT could be caused by Aß fibrils and/or by metals trapped in the plaques. Fibrillar and elemental compositions of Aß plaques were probed in brain samples from different types of AD patients and AD models to establish a relationship between XPCT contrast and Aß plaque characteristics. XPCT, micro-Fourier-Transform Infrared spectroscopy and micro-X-Ray Fluorescence spectroscopy were conducted on human samples (one genetic and one sporadic case) and on four transgenic rodent strains (mouse: APPPS1, ArcAß, J20; rat: TgF344). Aß plaques from the genetic AD patient were visible using XPCT, and had higher ß-sheet content and higher metal levels than those from the sporadic AD patient, which remained undetected by XPCT. Aß plaques in J20 mice and TgF344 rats appeared hyperdense on XPCT images, while they were hypodense with a hyperdense core in the case of APPPS1 and ArcAß mice. In all four transgenic strains, ß-sheet content was similar, while metal levels were highly variable: J20 (zinc and iron) and TgF344 (copper) strains showed greater metal accumulation than APPPS1 and ArcAß mice. Hence, a hyperdense contrast formation of Aß plaques in XPCT images was associated with biometal entrapment within plaques. STATEMENT OF SIGNIFICANCE: The role of metals in Alzheimer's disease (AD) has been a subject of continuous interest. It was already known that amyloid-ß plaques (Aß), the earliest hallmark of AD, tend to trap endogenous biometals like zinc, iron and copper. Here we show that this metal accumulation is the main reason why Aß plaques are detected with a new technique called X-ray phase contrast tomography (XPCT). XPCT enables to map the distribution of Aß plaques in the whole excised brain without labeling. In this work we describe a unique collection of four transgenic models of AD, together with a human sporadic and a rare genetic case of AD, thus exploring the full spectrum of amyloid contrast in XPCT.


Assuntos
Doença de Alzheimer , Oligoelementos , Humanos , Camundongos , Animais , Ratos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Cobre/química , Raios X , Camundongos Transgênicos , Peptídeos beta-Amiloides/metabolismo , Metais , Zinco/química , Ferro , Encéfalo/metabolismo , Amiloide , Placa Amiloide/diagnóstico por imagem , Placa Amiloide/química , Modelos Animais de Doenças
13.
J Neurosci Methods ; 383: 109729, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36272462

RESUMO

The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.


Assuntos
Meios de Contraste , Doenças do Sistema Nervoso , Humanos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X , Gadolínio , Fagócitos , Doenças do Sistema Nervoso/diagnóstico por imagem
14.
Chem Commun (Camb) ; 58(51): 7192-7195, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35670578

RESUMO

Amyloid fibrils are self-assembled mesoscopic protein aggregates, which can accumulate to form deposits or plaques in the brain. In vitro amplification of fibrils can be achieved with real-time quaking-induced conversion (RT-QuIC). However, this emerging technique would benefit from a complementary method to assess structural properties of the amplification products. This work demonstrates the feasibility of nanospray-charge-detection-mass-spectrometry (CDMS) performed on α-synuclein (αSyn) fibrils amplified from human brains with Parkinson's disease (PD) or Dementia with Lewy bodies (DLB) and its synergistic combination with RT-QuIC.


Assuntos
Doença de Parkinson , Sinucleinopatias , Amiloide/química , Encéfalo/metabolismo , Humanos , Espectrometria de Massas , Doença de Parkinson/metabolismo , Agregados Proteicos , alfa-Sinucleína/química
15.
Sci Rep ; 12(1): 4700, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35304540

RESUMO

With the aim of designing a preclinical study evaluating an intracerebral cell-based therapy for stroke, an observational study was performed in the rat suture model of ischemic stroke. Objectives were threefold: (i) to characterize neurofunctional and imaging readouts in the first weeks following transient ischemic stroke, according to lesion subtype (hypothalamic, striatal, corticostriatal); (ii) to confirm that intracerebral administration does not negatively impact these readouts; and (iii) to calculate sample sizes for a future therapeutic trial using these readouts as endpoints. Our results suggested that the most relevant endpoints were side bias (staircase test) and axial diffusivity (AD) (diffusion tensor imaging). Hypothalamic-only lesions did not affect those parameters, which were close to normal. Side bias in striatal lesions reached near-normal levels within 2 weeks, while rats with corticostriatal lesions remained impaired until week 14. AD values were decreased at 4 days and increased at 5 weeks post-surgery, with a subtype gradient: hypothalamic < striatal < corticostriatal. Intracerebral administration did not impact these readouts. After sample size calculation (18-147 rats per group according to the endpoint considered), we conclude that a therapeutic trial based on both readouts would be feasible only in the framework of a multicenter trial.


Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Animais , Terapia Baseada em Transplante de Células e Tecidos , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Ratos , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
16.
Biomed Opt Express ; 13(3): 1640-1653, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414980

RESUMO

While numerous transgenic mouse strains have been produced to model the formation of amyloid-ß (Aß) plaques in the brain, efficient methods for whole-brain 3D analysis of Aß deposits have to be validated and standardized. Moreover, routine immunohistochemistry performed on brain slices precludes any shape analysis of Aß plaques, or require complex procedures for serial acquisition and reconstruction. The present study shows how in-line (propagation-based) X-ray phase-contrast tomography (XPCT) combined with ethanol-induced brain sample dehydration enables hippocampus-wide detection and morphometric analysis of Aß plaques. Performed in three distinct Alzheimer mouse strains, the proposed workflow identified differences in signal intensity and 3D shape parameters: 3xTg displayed a different type of Aß plaques, with a larger volume and area, greater elongation, flatness and mean breadth, and more intense average signal than J20 and APP/PS1. As a label-free non-destructive technique, XPCT can be combined with standard immunohistochemistry. XPCT virtual histology could thus become instrumental in quantifying the 3D spreading and the morphological impact of seeding when studying prion-like properties of Aß aggregates in animal models of Alzheimer's disease. This is Part II of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part I shows how in-line XPCT enables 3D myelin mapping in the whole rodent brain and in human autopsy brain tissue.

17.
Biomed Opt Express ; 13(3): 1620-1639, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35415001

RESUMO

White-matter injury leads to severe functional loss in many neurological diseases. Myelin staining on histological samples is the most common technique to investigate white-matter fibers. However, tissue processing and sectioning may affect the reliability of 3D volumetric assessments. The purpose of this study was to propose an approach that enables myelin fibers to be mapped in the whole rodent brain with microscopic resolution and without the need for strenuous staining. With this aim, we coupled in-line (propagation-based) X-ray phase-contrast tomography (XPCT) to ethanol-induced brain sample dehydration. We here provide the proof-of-concept that this approach enhances myelinated axons in rodent and human brain tissue. In addition, we demonstrated that white-matter injuries could be detected and quantified with this approach, using three animal models: ischemic stroke, premature birth and multiple sclerosis. Furthermore, in analogy to diffusion tensor imaging (DTI), we retrieved fiber directions and DTI-like diffusion metrics from our XPCT data to quantitatively characterize white-matter microstructure. Finally, we showed that this non-destructive approach was compatible with subsequent complementary brain sample analysis by conventional histology. In-line XPCT might thus become a novel gold-standard for investigating white-matter injury in the intact brain. This is Part I of a series of two articles reporting the value of in-line XPCT for virtual histology of the brain; Part II shows how in-line XPCT enables the whole-brain 3D morphometric analysis of amyloid- ß (A ß ) plaques.

18.
Nanomedicine (Lond) ; 17(29): 2173-2187, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36927004

RESUMO

Aim: To propose a new multimodal imaging agent targeting amyloid-ß (Aß) plaques in Alzheimer's disease. Materials & methods: A new generation of hybrid contrast agents, based on gadolinium fluoride nanoparticles grafted with a pentameric luminescent-conjugated polythiophene, was designed, extensively characterized and evaluated in animal models of Alzheimer's disease through MRI, two-photon microscopy and synchrotron x-ray phase-contrast imaging. Results & conclusion: Two different grafting densities of luminescent-conjugated polythiophene were achieved while preserving colloidal stability and fluorescent properties, and without affecting biodistribution. In vivo brain uptake was dependent on the blood-brain barrier status. Nevertheless, multimodal imaging showed successful Aß targeting in both transgenic mice and Aß fibril-injected rats.


The design and study of a new contrast agent targeting amyloid-ß (Aß) plaques in Alzheimer's disease (AD) is proposed. Aß plaques are the earliest pathological sign of AD, silently appearing in the brain decades before the symptoms of the disease are manifested. While current detection of Aß plaques is based on nuclear medicine (a technique using a radioactive agent), a different kind of contrast agent is here evaluated in animal models of AD. The contrast agent consists of a nanoparticle made of gadolinium and fluorine ions (core), and decorated with a molecule previously shown to bind to Aß plaques (grafting). The core is detectable with MRI and x-ray imaging, while the grafting molecule is detectable with fluorescence imaging, thus allowing different imaging methods to be combined to study the pathology. In this work, the structure, stability and properties of the contrast agent have been verified in vitro (in tubes and on brain sections). Then the ability of the contrast agent to bind to Aß plaques and provide a detectable signal in MRI, x-ray or fluorescence imaging has been demonstrated in vivo (in rodent models of AD). This interdisciplinary research establishes the proof of concept that this new class of versatile agent contrast can be used to target pathological processes in the brain.


Assuntos
Doença de Alzheimer , Nanopartículas , Camundongos , Ratos , Animais , Doença de Alzheimer/diagnóstico por imagem , Distribuição Tecidual , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imagem Multimodal , Modelos Animais de Doenças
19.
Eur J Nucl Med Mol Imaging ; 38(3): 509-14, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20936410

RESUMO

PURPOSE: Neuroinflammation is involved in neurological disorders through the activation of microglial cells. Imaging of neuroinflammation with radioligands for the translocator protein (18 kDa) (TSPO) could prove to be an attractive biomarker for disease diagnosis and therapeutic evaluation. The indoleacetamide-derived 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide, SSR180575, is a selective high-affinity TSPO ligand in human and rodents with neuroprotective effects. METHODS: Here we report the radiolabelling of SSR180575 with (11)C and in vitro and in vivo imaging in an acute model of neuroinflammation in rats. RESULTS: The image contrast and the binding of [(11)C]SSR180575 are higher than that obtained with the isoquinoline-based TSPO radioligand, [(11)C]PK11195. Competition studies demonstrate that [(11)C]SSR180575 has high specific binding for the TSPO. CONCLUSION: [(11)C]SSR180575 is the first PET radioligand for the TSPO based on an indoleacetamide scaffold designed for imaging neuroinflammation in animal models and in the clinic.


Assuntos
Acetamidas/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Indóis/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de GABA-A/metabolismo , Animais , Autorradiografia , Radioisótopos de Carbono , Inflamação/diagnóstico por imagem , Inflamação/metabolismo , Inflamação/patologia , Ligantes , Radioquímica , Ratos
20.
EClinicalMedicine ; 37: 100982, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34195586

RESUMO

BACKGROUND: Amyloid positron emission tomography (PET) can measure in-vivo demyelination in patients with multiple sclerosis (MS). However, the value of 18F-labeled amyloid PET tracer, 18F-florbetapir in the longitudinal study for monitoring myelin loss and recovery has not been confirmed. METHODS: From March 2019 to September 2020, twenty-three patients with MS and nine healthy controls (HCs) underwent a hybrid PET/MRI at baseline and expanded disability status scale (EDSS) assessment, and eight of 23 patients further underwent follow-up PET/MRI. The distribution volume ratio (DVR) and standard uptake value ratio (SUVR) of 18F-florbetapir in damaged white matter (DWM) and normal-appearance white matter (NAWM) were obtained from dynamic and static PET acquisition. Diffusion tensor imaging-derived parameters were also calculated. Data were expressed as mean ± standard deviation with 99% confidence interval (99%CI). FINDING: The mean DVR (1.08 ± 0.12, 99%CI [1.02 ~ 1.14]) but not the mean SUVR of DWM lesions was lower than that of NAWM in patients with MS (1.25 ± 0.10, 99%CI [1.20 ~ 1.31]) and HCs (1.29 ± 0.08, 99%CI [1.23 ~ 1.36]). A trend toward lower mean fractional anisotropy (374.95 ± 45.30 vs. 419.07 ± 4.83) and higher mean radial diffusivity (0.45 ± 0.05 vs. 0.40 ± 0.01) of NAWM in patients with MS than those in HCs was found. DVR decreased in DWM lesions with higher MD (rho = -0.261, 99%CI [-0.362 ~ -0.144]), higher AD (rho = -0.200, 99%CI [-0.318 ~ -0.070]) and higher RD (rho = -0.198, 99%CI [-0.313 ~ -0.075]). Patients' EDSS scores were reduced (B = 0.04, 99%CI [-0.005 ~ 0.084]) with decreased index of global demyelination in the longitudinal study. INTERPRETATION: Our exploratory study suggests that dynamic 18F-florbetapir PET/MRI may be a very promising tool for quantitatively monitoring myelin loss and recovery in patients with MS. FUNDING: Shanghai Pujiang Program, Shanghai Municipal Key Clinical Specialty, Shanghai Shuguang Plan Project, Shanghai Health and Family Planning Commission Research Project, Clinical Research Plan of SHDC, French-Chinese program "Xu Guangqi".

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA