Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Stress Chaperones ; 26(2): 341-353, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33184780

RESUMO

The Ziziphus species are naturally tolerant to a range of abiotic stresses. Therefore, it is expected that they are an enriched source of genes conferring stress tolerance. Heat shock proteins (Hsps) play a significant role in plants in imparting tolerance against abiotic stress conditions. To get an insight into potential Hsp function in Ziziphus, we performed a genome-wide analysis and expression study of Hsp70 and Hsp100 gene families in Ziziphus jujuba. We identified 21 and 6 genes of the ZjHsp70 and ZjHsp100 families, respectively. Physiochemical properties, chromosomal location, gene structure, motifs, and protein domain organization were analysed for structural and functional characterization. We identified the contribution of tandem and segmental gene duplications in expansions of ZjHsp70s and ZjHsp100s in Z. jujuba. Promoter analysis suggested that ZjHsp70s and ZjHsp100s perform diverse functions related to abiotic stress. Furthermore, expression analyses revealed that most of the Z. jujuba Hsp genes are differentially expressed in response to heat, drought, and salinity stress. Our analyses suggested ZjHsp70-3, ZjHsp70-5, ZjHsp70-6, ZjHsp70-16, ZjHsp70-17, ZjHsp70-20, ZjHsp100-1, ZjHsp100-2, and ZjHsp100-3 are potential candidates for further functional analysis and with regard to breeding new more resilient strains. The present analysis laid the foundation for understanding the molecular mechanism of Hsps70 and Hsp100 gene families regulating abiotic stress tolerance in Z. jujuba.


Assuntos
Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Ziziphus/metabolismo
2.
Appl Biochem Biotechnol ; 193(4): 1023-1041, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33244672

RESUMO

Plant heat shock transcription factors (Hsfs) play a significant role in adoption under abiotic stress conditions by modulating the expression of several stress-responsive genes. Analysis of the Hsf gene family will serve to understand the molecular mechanism which is involved in response to abiotic stress. The Ziziphus species grows in warm and dry regions and is inherently tolerant to abiotic stress conditions; thus, Ziziphus is a highly enriched source of genes conferring abiotic stress tolerance. Therefore, the present study provides a comprehensive genome-wide analysis of the Hsf gene family in Z. jujuba. Identified 21 non-redundant Hsf genes were grouped into three major classes (classes A, B, and C) based on the phylogenetic analysis. Promoter and gene ontology analysis suggested that ZjHsfs perform diverse functions in response to abiotic stress conditions. Two paralogous pairs resulting from tandem gene duplication events were identified. Also, physio-chemical properties of chromosomal locations, gene structure, motifs, and protein domain organization of Hsfs were analyzed. Real-time PCR expression analyses revealed that most of the Z. jujuba Hsf genes are differentially expressed in response to heat stress. The analysis suggested ZjHsf-2, ZjHsf-3, ZjHsf-5, ZjHsf-7, ZjHsf-8, ZjHsf-10, ZjHsf-12, ZjHsf-17, and ZjHsf-18 were the outstanding candidate genes for imparting heat stress tolerance and for future functional analysis. The present analysis laid the foundation for understanding the molecular mechanism of the Hsf gene family regulating Z. jujuba development and tolerance to abiotic stress conditions.


Assuntos
Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico , Proteínas de Plantas , Estresse Fisiológico , Fatores de Transcrição , Ziziphus , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/biossíntese , Proteínas de Choque Térmico/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Ziziphus/genética , Ziziphus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA