Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Nucleic Acids Res ; 51(14): 7580-7601, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37254812

RESUMO

The selenocysteine (Sec) tRNA (tRNA[Ser]Sec) governs Sec insertion into selenoproteins by the recoding of a UGA codon, typically used as a stop codon. A homozygous point mutation (C65G) in the human tRNA[Ser]Sec acceptor arm has been reported by two independent groups and was associated with symptoms such as thyroid dysfunction and low blood selenium levels; however, the extent of altered selenoprotein synthesis resulting from this mutation has yet to be comprehensively investigated. In this study, we used CRISPR/Cas9 technology to engineer homozygous and heterozygous mutant human cells, which we then compared with the parental cell lines. This C65G mutation affected many aspects of tRNA[Ser]Sec integrity and activity. Firstly, the expression level of tRNA[Ser]Sec was significantly reduced due to an altered recruitment of RNA polymerase III at the promoter. Secondly, selenoprotein expression was strongly altered, but, more surprisingly, it was no longer sensitive to selenium supplementation. Mass spectrometry analyses revealed a tRNA isoform with unmodified wobble nucleotide U34 in mutant cells that correlated with reduced UGA recoding activities. Overall, this study demonstrates the pleiotropic effect of a single C65G mutation on both tRNA phenotype and selenoproteome expression.


Assuntos
Selênio , Humanos , Códon de Terminação , Mutação , Selênio/farmacologia , Selênio/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Proteoma
2.
Int J Mol Sci ; 25(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39000368

RESUMO

Selenium is an essential trace element in our diet, crucial for the composition of human selenoproteins, which include 25 genes such as glutathione peroxidases and thioredoxin reductases. The regulation of the selenoproteome primarily hinges on the bioavailability of selenium, either from dietary sources or cell culture media. This selenium-dependent control follows a specific hierarchy, with "housekeeping" selenoproteins maintaining constant expression while "stress-regulated" counterparts respond to selenium level fluctuations. This study investigates the variability in fetal bovine serum (FBS) selenium concentrations among commercial batches and its effects on the expression of specific stress-related cellular selenoproteins. Despite the limitations of our study, which exclusively used HEK293 cells and focused on a subset of selenoproteins, our findings highlight the substantial impact of serum selenium levels on selenoprotein expression, particularly for GPX1 and GPX4. The luciferase reporter assay emerged as a sensitive and precise method for evaluating selenium levels in cell culture environments. While not exhaustive, this analysis provides valuable insights into selenium-mediated selenoprotein regulation, emphasizing the importance of serum composition in cellular responses and offering guidance for researchers in the selenoprotein field.


Assuntos
Selênio , Selenoproteínas , Selênio/sangue , Selênio/metabolismo , Humanos , Selenoproteínas/genética , Selenoproteínas/metabolismo , Bovinos , Animais , Células HEK293 , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase GPX1 , Soro/metabolismo , Soro/química , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Meios de Cultura/química , Regulação da Expressão Gênica/efeitos dos fármacos
3.
Int J Mol Sci ; 24(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894953

RESUMO

Zinc, an essential trace element that serves as a cofactor for numerous cellular and viral proteins, plays a central role in the dynamics of HIV-1 infection. Among the viral proteins, the nucleocapsid NCp7, which contains two zinc finger motifs, is abundantly present viral particles and plays a crucial role in coating HIV-1 genomic RNA, thus concentrating zinc within virions. In this study, we investigated whether HIV-1 virus production impacts cellular zinc homeostasis and whether isotopic fractionation occurs between the growth medium, the producing cells, and the viral particles. We found that HIV-1 captures a significant proportion of cellular zinc in the neo-produced particles. Furthermore, as cells grow, they accumulate lighter zinc isotopes from the medium, resulting in a concentration of heavier isotopes in the media, and the viruses exhibit a similar isotopic fractionation to the producing cells. Moreover, we generated HIV-1 particles in HEK293T cells enriched with each of the five zinc isotopes to assess the potential effects on the structure and infectivity of the viruses. As no strong difference was observed between the HIV-1 particles produced in the various conditions, we have demonstrated that enriched isotopes can be accurately used in future studies to trace the fate of zinc in cells infected by HIV-1 particles. Comprehending the mechanisms underlying zinc absorption by HIV-1 viral particles offers the potential to provide insights for developing future treatments aimed at addressing this specific facet of the virus's life cycle.


Assuntos
HIV-1 , Humanos , HIV-1/metabolismo , Sequência de Aminoácidos , Células HEK293 , Proteínas Virais/metabolismo , Vírion/metabolismo , RNA/metabolismo , Zinco/metabolismo , Isótopos de Zinco/metabolismo , Isótopos/metabolismo , Dedos de Zinco
4.
Nucleic Acids Res ; 48(22): 12502-12522, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33264393

RESUMO

Coronaviruses represent a large family of enveloped RNA viruses that infect a large spectrum of animals. In humans, the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic and is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2002 and 2012, respectively. All viruses described to date entirely rely on the protein synthesis machinery of the host cells to produce proteins required for their replication and spread. As such, virus often need to control the cellular translational apparatus to avoid the first line of the cellular defense intended to limit the viral propagation. Thus, coronaviruses have developed remarkable strategies to hijack the host translational machinery in order to favor viral protein production. In this review, we will describe some of these strategies and will highlight the role of viral proteins and RNAs in this process.


Assuntos
COVID-19/prevenção & controle , Genoma Viral/genética , Biossíntese de Proteínas/genética , RNA Viral/genética , SARS-CoV-2/genética , Animais , COVID-19/epidemiologia , COVID-19/virologia , Regulação Viral da Expressão Gênica , Humanos , Pandemias , SARS-CoV-2/fisiologia , Replicação Viral
5.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163318

RESUMO

The infection of CD4 T-lymphocytes with human immunodeficiency virus (HIV), the etiological agent of acquired immunodeficiency syndrome (AIDS), disrupts cellular homeostasis, increases oxidative stress and interferes with micronutrient metabolism. Viral replication simultaneously increases the demand for micronutrients and causes their loss, as for selenium (Se). In HIV-infected patients, selenium deficiency was associated with a lower CD4 T-cell count and a shorter life expectancy. Selenium has an important role in antioxidant defense, redox signaling and redox homeostasis, and most of these biological activities are mediated by its incorporation in an essential family of redox enzymes, namely the selenoproteins. Here, we have investigated how selenium and selenoproteins interplay with HIV infection in different cellular models of human CD4 T lymphocytes derived from established cell lines (Jurkat and SupT1) and isolated primary CD4 T cells. First, we characterized the expression of the selenoproteome in various human T-cell models and found it tightly regulated by the selenium level of the culture media, which was in agreement with reports from non-immune cells. Then, we showed that selenium had no significant effect on HIV-1 protein production nor on infectivity, but slightly reduced the percentage of infected cells in a Jurkat cell line and isolated primary CD4 T cells. Finally, in response to HIV-1 infection, the selenoproteome was slightly altered.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , Selênio/metabolismo , Selenoproteínas/metabolismo , Replicação Viral/fisiologia , Síndrome da Imunodeficiência Adquirida/metabolismo , Antioxidantes/metabolismo , Linhagem Celular Tumoral , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Células Jurkat , Estresse Oxidativo/fisiologia
6.
Int J Mol Sci ; 22(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34298926

RESUMO

Selenoproteins, in which the selenium atom is present in the rare amino acid selenocysteine, are vital components of cell homeostasis, antioxidant defense, and cell signaling in mammals. The expression of the selenoproteome, composed of 25 selenoprotein genes, is strongly controlled by the selenium status of the body, which is a corollary of selenium availability in the food diet. Here, we present an alternative strategy for the use of the radioactive 75Se isotope in order to characterize the selenoproteome regulation based on (i) the selective labeling of the cellular selenocompounds with non-radioactive selenium isotopes (76Se, 77Se) and (ii) the detection of the isotopic enrichment of the selenoproteins using size-exclusion chromatography followed by inductively coupled plasma mass spectrometry detection. The reliability of our strategy is further confirmed by western blots with distinct selenoprotein-specific antibodies. Using our strategy, we characterized the hierarchy of the selenoproteome regulation in dose-response and kinetic experiments.


Assuntos
Isótopos/metabolismo , Proteoma/metabolismo , Selênio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Antioxidantes/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Reprodutibilidade dos Testes
7.
J Biol Chem ; 291(46): 24036-24040, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27645994

RESUMO

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Assuntos
Selenoproteínas/classificação , Selenoproteínas/genética , Humanos , Terminologia como Assunto
8.
J Biol Chem ; 289(21): 14750-61, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24706762

RESUMO

Selenocysteine is inserted into selenoproteins via the translational recoding of a UGA codon, normally used as a stop signal. This process depends on the nature of the selenocysteine insertion sequence element located in the 3' UTR of selenoprotein mRNAs, selenium bioavailability, and, possibly, exogenous stimuli. To further understand the function and regulation of selenoproteins in antioxidant defense and redox homeostasis, we investigated how oxidative stress influences selenoprotein expression as a function of different selenium concentrations. We found that selenium supplementation of the culture media, which resulted in a hierarchical up-regulation of selenoproteins, protected HEK293 cells from reactive oxygen species formation. Furthermore, in response to oxidative stress, we identified a selective up-regulation of several selenoproteins involved in antioxidant defense (Gpx1, Gpx4, TR1, SelS, SelK, and Sps2). Interestingly, the response was more efficient when selenium was limiting. Although a modest change in mRNA levels was noted, we identified a novel translational control mechanism stimulated by oxidative stress that is characterized by up-regulation of UGA-selenocysteine recoding efficiency and relocalization of SBP2, selenocysteine-specific elongation factor, and L30 recoding factors from the cytoplasm to the nucleus.


Assuntos
Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Selenoproteínas/genética , Regulação para Cima/efeitos dos fármacos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Immunoblotting , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Oxidantes/farmacologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Selênio/metabolismo , Selênio/farmacologia , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/metabolismo , Glutationa Peroxidase GPX1
9.
J Biol Chem ; 289(9): 6299-310, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24425862

RESUMO

Selenium is an essential trace element, which is incorporated as selenocysteine into at least 25 selenoproteins using a unique translational UGA-recoding mechanism. Selenoproteins are important enzymes involved in antioxidant defense, redox homeostasis, and redox signaling pathways. Selenium levels decline during aging, and its deficiency is associated with a marked increase in mortality for people over 60 years of age. Here, we investigate the relationship between selenium levels in the culture medium, selenoprotein expression, and replicative life span of human embryonic lung fibroblast WI-38 cells. Selenium levels regulate the entry into replicative senescence and modify the cellular markers characteristic for senescent cells. Whereas selenium supplementation extends the number of population doublings, its deficiency impairs the proliferative capacity of WI-38 cells. We observe that the expression of several selenoproteins involved in antioxidant defense is specifically affected in response to cellular senescence. Their expression is selectively controlled by the modulation of mRNA levels and translational recoding efficiencies. Our data provide novel mechanistic insights into how selenium impacts the replicative life span of mammalian cells by identifying several selenoproteins as new targets of senescence.


Assuntos
Proliferação de Células , Senescência Celular/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica/fisiologia , Selênio/metabolismo , Selenoproteínas/biossíntese , Animais , Linhagem Celular , Fibroblastos/citologia , Humanos , RNA Mensageiro/biossíntese
10.
RNA Biol ; 9(5): 681-90, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22614831

RESUMO

Selenocysteine insertion into selenoproteins involves the translational recoding of UGA stop codons. In mammals, selenoprotein expression further depends on selenium availability, which has been particularly described for glutathione peroxidase 1 and 4 (Gpx1 and Gpx4). The SECIS element located in the 3'UTR of the selenoprotein mRNAs is a modulator of UGA recoding efficiency in adequate selenium conditions. One of the current models for the UGA recoding mechanism proposes that the SECIS binds SECIS-binding protein 2 (SBP2), which then recruits a selenocysteine-specific elongation factor (EFsec) and tRNA (Sec) to the ribosome, where L30 acts as an anchor. The involvement of the SECIS in modulation of UGA recoding activity was investigated, together with SBP2 and EFsec, in Hek293 cells cultured with various selenium levels. Luciferase reporter constructs, in transiently or stably expressing cell lines, were used to analyze the differential expression of Gpx1 and Gpx4. We showed that, upon selenium fluctuation, the modulation of UGA recoding efficiency depends on the nature of the SECIS, with Gpx1 being more sensitive than Gpx4. Attenuation of SBP2 and EFsec levels by shRNAs confirmed that both factors are essential for efficient selenocysteine insertion. Strikingly, in a context of either EFsec or SBP2 attenuation, the decrease in UGA recoding efficiency is dependent on the nature of the SECIS, GPx1 being more sensitive. Finally, the profusion of selenium of the culture medium exacerbates the lack of factors involved in selenocysteine insertion.


Assuntos
Regulação Enzimológica da Expressão Gênica , Glutationa Peroxidase/genética , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Códon de Terminação/genética , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Sequências Repetidas Invertidas , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Biossíntese de Proteínas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Selênio/fisiologia , Glutationa Peroxidase GPX1
11.
Sci Rep ; 12(1): 9073, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641783

RESUMO

Reconstructed human epidermis equivalents (RHE) have been developed as a clinical skin substitute and as the replacement for animal testing in both research and industry. KiPS, or keratinocytes derived from induced pluripotent stem cells (iPSCs) are frequently used to generate RHE. In this study, we focus on the mitochondrial performance of the KiPS derived from iPSCs obtained from two donors. We found that the KiPS derived from the older donor have more defective mitochondria. Treatment of these KiPS with a plant extract enriched in compounds known to protect mitochondria improved mitochondrial respiration and rendered them fully competent to derive high-quality RHE. Overall, our results suggest that improving mitochondrial function in KiPS is one of the key aspects to obtain a functional RHE and that our plant extracts can improve in this process.


Assuntos
Queratinócitos , Extratos Vegetais , Animais , Células Epidérmicas , Epiderme/metabolismo , Humanos , Queratinócitos/metabolismo , Mitocôndrias , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia
12.
Nucleic Acids Res ; 37(17): 5868-80, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19651878

RESUMO

The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS elements encoded in the human genome. Surprisingly, the SECIS elements displayed a wide range of UGA recoding activities, spanning several 1000-fold in vivo and several 100-fold in vitro. The difference in activity between a representative strong and weak SECIS element was not explained by differential binding affinity of SECIS binding Protein 2, a limiting factor for selenocysteine incorporation. Using chimeric SECIS molecules, we identified the internal loop and helix 2, which flank the kink-turn motif, as critical determinants of UGA recoding activity. The simultaneous presence of a GC base pair in helix 2 and a U in the 5'-side of the internal loop was a statistically significant predictor of weak recoding activity. Thus, the SECIS contains intrinsic information that modulates selenocysteine incorporation efficiency.


Assuntos
Regiões 3' não Traduzidas/química , Códon de Terminação , Biossíntese de Proteínas , Selenocisteína/metabolismo , Regiões 3' não Traduzidas/metabolismo , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Genoma Humano , Humanos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de RNA
13.
Nat Struct Mol Biol ; 12(5): 408-16, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15821744

RESUMO

The translational recoding of UGA as selenocysteine (Sec) is directed by a SECIS element in the 3' untranslated region (UTR) of eukaryotic selenoprotein mRNAs. The selenocysteine insertion sequence (SECIS) contains two essential tandem sheared G.A pairs that bind SECIS-binding protein 2 (SBP2), which recruits a selenocysteine-specific elongation factor and Sec-tRNA(Sec) to the ribosome. Here we show that ribosomal protein L30 is a component of the eukaryotic selenocysteine recoding machinery. L30 binds SECIS elements in vitro and in vivo, stimulates UGA recoding in transfected cells and competes with SBP2 for SECIS binding. Magnesium, known to induce a kink-turn in RNAs that contain two tandem G.A pairs, decreases the SBP2-SECIS complex in favor of the L30-SECIS interaction. We propose a model in which SBP2 and L30 carry out different functions in the UGA recoding mechanism, with the SECIS acting as a molecular switch upon protein binding.


Assuntos
Códon/genética , Células Eucarióticas/metabolismo , Proteínas Ribossômicas/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Códon de Terminação/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Secundária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteínas Ribossômicas/química , Proteínas Ribossômicas/isolamento & purificação , Alinhamento de Sequência
14.
Metallomics ; 12(10): 1555-1562, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32851388

RESUMO

Compelling evidence suggests that heavy metals have potentially harmful effects on the skin. However, knowledge about cellular signaling events and toxicity subsequent to human skin cell exposure to metals is still poorly documented. The aim of this study was to focus on the interaction between four different heavy metals (lead, nickel, cadmium, and mercury) at doses mimicking chronic low-levels of environmental exposure and the effect on skin to get better insight into metal-cell interactions. We provide evidence that the two metals (lead and nickel) can permeate the skin and accumulate at high concentrations in the dermis. The skin barrier was disrupted after metal exposure and this was accompanied by apoptosis, DNA damage and lipid oxidation. Skin antioxidant enzymes such as glutathione peroxidase and methionine sulfoxide reductase are also heavy metal targets. Taken together, our findings provide insight into potential mechanisms of metal-induced oxidative stress production and the cellular consequences of these events.


Assuntos
Cádmio/toxicidade , Chumbo/toxicidade , Mercúrio/toxicidade , Níquel/toxicidade , Pele/efeitos dos fármacos , Adulto , Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Metais Pesados/toxicidade , Imagem Molecular , Estresse Oxidativo/efeitos dos fármacos , Pele/diagnóstico por imagem , Pele/metabolismo
15.
Nutrients ; 11(9)2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31487871

RESUMO

Reactive oxygen species (ROS) are frequently produced during viral infections. Generation of these ROS can be both beneficial and detrimental for many cellular functions. When overwhelming the antioxidant defense system, the excess of ROS induces oxidative stress. Viral infections lead to diseases characterized by a broad spectrum of clinical symptoms, with oxidative stress being one of their hallmarks. In many cases, ROS can, in turn, enhance viral replication leading to an amplification loop. Another important parameter for viral replication and pathogenicity is the nutritional status of the host. Viral infection simultaneously increases the demand for micronutrients and causes their loss, which leads to a deficiency that can be compensated by micronutrient supplementation. Among the nutrients implicated in viral infection, selenium (Se) has an important role in antioxidant defense, redox signaling and redox homeostasis. Most of biological activities of selenium is performed through its incorporation as a rare amino acid selenocysteine in the essential family of selenoproteins. Selenium deficiency, which is the main regulator of selenoprotein expression, has been associated with the pathogenicity of several viruses. In addition, several selenoprotein members, including glutathione peroxidases (GPX), thioredoxin reductases (TXNRD) seemed important in different models of viral replication. Finally, the formal identification of viral selenoproteins in the genome of molluscum contagiosum and fowlpox viruses demonstrated the importance of selenoproteins in viral cycle.


Assuntos
Selênio/metabolismo , Selenoproteínas/metabolismo , Viroses/metabolismo , Antioxidantes/metabolismo , Humanos , Espécies Reativas de Oxigênio
16.
Cells ; 8(6)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31212706

RESUMO

The translation of selenoprotein mRNAs involves a non-canonical ribosomal event in which an in-frame UGA is recoded as a selenocysteine (Sec) codon instead of being read as a stop codon. The recoding machinery is centered around two dedicated RNA components: The selenocysteine insertion sequence (SECIS) located in the 3' UTR of the mRNA and the selenocysteine-tRNA (Sec-tRNA[Ser]Sec). This translational UGA-selenocysteine recoding event by the ribosome is a limiting stage of selenoprotein expression. Its efficiency is controlled by the SECIS, the Sec-tRNA[Ser]Sec and their interacting protein partners. In the present work, we used a recently developed CRISPR strategy based on murine leukemia virus-like particles (VLPs) loaded with Cas9-sgRNA ribonucleoproteins to inactivate the Sec-tRNA[Ser]Sec gene in human cell lines. We showed that these CRISPR-Cas9-VLPs were able to induce efficient genome-editing in Hek293, HepG2, HaCaT, HAP1, HeLa, and LNCaP cell lines and this caused a robust reduction of selenoprotein expression. The alteration of selenoprotein expression was the direct consequence of lower levels of Sec-tRNA[Ser]Sec and thus a decrease in translational recoding efficiency of the ribosome. This novel strategy opens many possibilities to study the impact of selenoprotein deficiency in hard-to-transfect cells, since these CRISPR-Cas9-VLPs have a wide tropism.


Assuntos
Sistemas CRISPR-Cas/genética , Códon de Terminação/genética , RNA de Transferência Aminoácido-Específico/genética , Ribossomos/metabolismo , Selenocisteína/metabolismo , Vírion/metabolismo , Sequência de Bases , Edição de Genes , Células HEK293 , Células HeLa , Humanos , Mutação INDEL/genética , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência Aminoácido-Específico/química , Selênio/metabolismo , Selenoproteínas/genética , Selenoproteínas/metabolismo
17.
Nutrients ; 11(7)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277500

RESUMO

Selenium is an essential trace element which is incorporated in the form of a rare amino acid, the selenocysteine, into an important group of proteins, the selenoproteins. Among the twenty-five selenoprotein genes identified to date, several have important cellular functions in antioxidant defense, cell signaling and redox homeostasis. Many selenoproteins are regulated by the availability of selenium which mostly occurs in the form of water-soluble molecules, either organic (selenomethionine, selenocysteine, and selenoproteins) or inorganic (selenate or selenite). Recently, a mixture of selenitriglycerides, obtained by the reaction of selenite with sunflower oil at high temperature, referred to as Selol, was proposed as a novel non-toxic, highly bioavailable and active antioxidant and antineoplastic agent. Free selenite is not present in the final product since the two phases (water soluble and oil) are separated and the residual water-soluble selenite discarded. Here we compare the assimilation of selenium as Selol, selenite and selenate by various cancerous (LNCaP) or immortalized (HEK293 and PNT1A) cell lines. An approach combining analytical chemistry, molecular biology and biochemistry demonstrated that selenium from Selol was efficiently incorporated in selenoproteins in human cell lines, and thus produced the first ever evidence of the bioavailability of selenium from selenized lipids.


Assuntos
Óleos de Plantas/metabolismo , Ácido Selênico/metabolismo , Ácido Selenioso/metabolismo , Compostos de Selênio/metabolismo , Selenoproteínas/biossíntese , Triglicerídeos/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos
18.
J Clin Endocrinol Metab ; 104(5): 1369-1377, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30423129

RESUMO

CONTEXT: Thyroid hormone is important for normal brain development. The type 2 deiodinase (D2) controls thyroid hormone action in the brain by activating T4 to T3. The enzymatic activity of D2 depends on the incorporation of selenocysteine for which the selenocysteine-insertion sequence (SECIS) element located in the 3' untranslated region is indispensable. We hypothesized that mutations in the SECIS element could affect D2 function, resulting in a neurocognitive phenotype. OBJECTIVE: To identify mutations in the SECIS element of DIO2 in patients with intellectual disability and to test their functional consequences. DESIGN, SETTING, AND PATIENTS: The SECIS element of DIO2 was sequenced in 387 patients with unexplained intellectual disability using a predefined pattern of thyroid function tests. SECIS element read-through in wild-type or mutant D2 was quantified by a luciferase reporter system in transfected cells. Functional consequences were assessed by quantifying D2 activity in cell lysate or intact cell metabolism studies. RESULTS: Sequence analysis revealed 2 heterozygous mutations: c.5703C>T and c.5730A>T, which were also present in the unaffected family members. The functional evaluation showed that both mutations did not affect D2 enzyme activity in cell lysates or intact cells, although the 5730A>T mutation decreased SECIS element read-through by 75%. In the patient harboring the c.5730A>T variant, whole genome sequencing revealed a pathogenic deletion of the STXBP1 gene. CONCLUSIONS: We report on two families with mutations in the SECIS element of D2. Although functional analysis showed that nucleotide 5730 is important for normal SECIS element read-through, the two variants did not segregate with a distinct phenotype.


Assuntos
Encefalopatias/genética , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Mutação , Sequências Reguladoras de Ácido Nucleico , Selenocisteína/metabolismo , Hormônios Tireóideos/metabolismo , Adulto , Encefalopatias/patologia , Criança , Estudos de Coortes , Feminino , Seguimentos , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Masculino , Proteínas Munc18/genética , Linhagem , Prognóstico , Selenocisteína/genética , Adulto Jovem , Iodotironina Desiodinase Tipo II
19.
Methods Mol Biol ; 1661: 193-203, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28917046

RESUMO

Selenium (Se) is an essential component of genetically encoded selenoproteins, in the form of a rare amino acid, namely the selenocysteine (Sec). Radioactive 75Se has been widely used to trace selenoproteins in vitro and in vivo (cell models and animals). Alternatively, its unique isotopic pattern can be used to detect and characterize nonradioactive Se-compounds in cellular extracts using molecular or elemental mass spectrometry at ppm levels. However, when studying trace levels of Se-compounds, such as selenoproteins (ppt levels), the distribution of the signal between its six naturally abundant isotopes reduces its sensitivity. Here, we describe the use of isotopically enriched forms of Se as an alternative strategy to radioactive 75Se, for the labeling and tracing of selenoproteins in cultured cell lines.


Assuntos
Marcação por Isótopo , Isótopos , Proteômica , Selenoproteínas/análise , Animais , Linhagem Celular , Células Cultivadas , Humanos , Espectrometria de Massas , Proteômica/métodos , Selênio
20.
Methods Mol Biol ; 1661: 205-217, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28917047

RESUMO

In contrast to other trace elements that are cofactors of enzymes and removed from proteins under denaturing conditions, Se is covalently bound to proteins when incorporated into selenoproteins, since it is a component of selenocysteine aminoacid. It implies that selenoproteins can undergo several biochemical separation methods in stringent and chaotropic conditions and still maintain the presence of selenium in the primary sequence. This feature has been used to develop a method for the detection of trace levels of human selenoproteins in cell extracts without the use of radioactive isotopes. The selenoproteins are separated as a function of their isoelectric point (pI) using iso-electrofocusing (IEF) electrophoretic strips and detected by laser ablation-inductively coupled plasma mass spectrometry (LA-ICP MS). This method, therefore referred to as IEF-LA-ICP MS, allowed the detection of several selenoproteins in human cell lines, including Gpx1, Gpx4, TXNRD1, TXNRD2, and SELENOF.


Assuntos
Espectrometria de Massas , Selenoproteínas/análise , Linhagem Celular , Glutationa Peroxidase/metabolismo , Humanos , Espectrometria de Massas/métodos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA