Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(15): 4725-30, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25825750

RESUMO

Nonresolving chronic inflammation at the neoplastic site is consistently associated with promoting tumor progression and poor patient outcomes. However, many aspects behind the mechanisms that establish this tumor-promoting inflammatory microenvironment remain undefined. Using bladder cancer (BC) as a model, we found that CD14-high cancer cells express higher levels of numerous inflammation mediators and form larger tumors compared with CD14-low cells. CD14 antigen is a glycosyl-phosphatidylinositol (GPI)-linked glycoprotein and has been shown to be critically important in the signaling pathways of Toll-like receptor (TLR). CD14 expression in this BC subpopulation of cancer cells is required for increased cytokine production and increased tumor growth. Furthermore, tumors formed by CD14-high cells are more highly vascularized with higher myeloid cell infiltration. Inflammatory factors produced by CD14-high BC cells recruit and polarize monocytes and macrophages to acquire immune-suppressive characteristics. In contrast, CD14-low BC cells have a higher baseline cell division rate than CD14-high cells. Importantly, CD14-high cells produce factors that further increase the proliferation of CD14-low cells. Collectively, we demonstrate that CD14-high BC cells may orchestrate tumor-promoting inflammation and drive tumor cell proliferation to promote tumor growth.


Assuntos
Proliferação de Células/genética , Citocinas/genética , Receptores de Lipopolissacarídeos/genética , Microambiente Tumoral/genética , Neoplasias da Bexiga Urinária/genética , Animais , Linhagem Celular Tumoral , Citocinas/metabolismo , Citometria de Fluxo , Imunofluorescência , Regulação Neoplásica da Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Queratina-14/genética , Queratina-14/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Camundongos Transgênicos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante Heterólogo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
2.
Nature ; 447(7143): 497-500, 2007 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-17468745

RESUMO

Bacteria make extensive use of riboswitches to sense metabolites and control gene expression, and typically do so by modulating premature transcription termination or translation initiation. The most widespread riboswitch class known in bacteria responds to the coenzyme thiamine pyrophosphate (TPP), which is a derivative of vitamin B1. Representatives of this class have also been identified in fungi and plants, where they are predicted to control messenger RNA splicing or processing. We examined three TPP riboswitches in the filamentous fungus Neurospora crassa, and found that one activates and two repress gene expression by controlling mRNA splicing. A detailed mechanism involving riboswitch-mediated base-pairing changes and alternative splicing control was elucidated for precursor NMT1 mRNAs, which code for a protein involved in TPP metabolism. These results demonstrate that eukaryotic cells employ metabolite-binding RNAs to regulate RNA splicing events that are important for the control of key biochemical processes.


Assuntos
Processamento Alternativo/genética , Células Eucarióticas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Genes Fúngicos/genética , Íntrons/genética , Neurospora crassa/genética , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/genética , Aptâmeros de Nucleotídeos/metabolismo , Pareamento de Bases , Sequência de Bases , Fases de Leitura Aberta/genética , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
J Immunol ; 179(10): 6808-19, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-17982071

RESUMO

Humoral immunity is characterized by the generation of Ab-secreting plasma cells and memory B cells that can more rapidly generate specific Abs upon Ag exposure than their naive counterparts. To determine the intrinsic differences that distinguish naive and memory B cells and to identify pathways that allow germinal center B cells to differentiate into memory B cells, we compared the transcriptional profiles of highly purified populations of these three cell types along with plasma cells isolated from mice immunized with a T-dependent Ag. The transcriptional profile of memory B cells is similar to that of naive B cells, yet displays several important differences, including increased expression of activation-induced deaminase and several antiapoptotic genes, chemotactic receptors, and costimulatory molecules. Retroviral expression of either Klf2 or Ski, two transcriptional regulators specifically enriched in memory B cells relative to their germinal center precursors, imparted a competitive advantage to Ag receptor and CD40-engaged B cells in vitro. These data suggest that humoral recall responses are more rapid than primary responses due to the expression of a unique transcriptional program by memory B cells that allows them to both be maintained at high frequencies and to detect and rapidly respond to antigenic re-exposure.


Assuntos
Formação de Anticorpos , Antígenos/imunologia , Diferenciação Celular/imunologia , Regulação da Expressão Gênica/imunologia , Memória Imunológica , Plasmócitos/imunologia , Animais , Formação de Anticorpos/genética , Antígenos/metabolismo , Antígenos CD40/biossíntese , Antígenos CD40/imunologia , Diferenciação Celular/genética , Citidina Desaminase/biossíntese , Citidina Desaminase/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Perfilação da Expressão Gênica , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Memória Imunológica/genética , Proteínas Inibidoras de Apoptose/biossíntese , Proteínas Inibidoras de Apoptose/imunologia , Fatores de Transcrição Kruppel-Like/biossíntese , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/imunologia , Masculino , Camundongos , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/imunologia , Receptores de Quimiocinas/biossíntese , Receptores de Quimiocinas/imunologia , Retroviridae , Transcrição Gênica/imunologia
4.
Biochemistry ; 44(40): 13404-14, 2005 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-16201765

RESUMO

A riboswitch within the 5' untranslated region (UTR) of the Bacillus subtilis pbuE mRNA binds adenine and related analogues in the absence of protein factors; excess adenine added to bacterial growth media triggers activation of a reporter gene that carries this riboswitch. To assess whether the riboswitch reaches thermodynamic equilibrium, or is operated by the kinetics of ligand binding and RNA transcription, we examined the detailed equilibrium and kinetic parameters for the complex formation between the aptamer domain of this riboswitch and the ligands adenine, 2-aminopurine (2AP), and 2,6-diaminopurine (DAP). Using a fluorescence-based assay, we have confirmed that adenine and 2AP have nearly equal binding affinity, with KD values for 2AP ranging from 250 nM to 3 microM at temperatures ranging from 15 to 35 degrees C, while DAP binds with much higher affinity. The association rate constant, however, favors adenine over DAP and 2AP by 3- and 10-fold, respectively, at 25 degrees C. Furthermore, the rate constants for adenine association and dissociation with the aptamer suggest that the pbuE riboswitch could be either kinetically or thermodynamically controlled depending upon the time scale of transcription and external variables such as temperature. We cite data that suggest kinetic control under certain conditions and illustrate with a model calculation how the system can switch between kinetic and equilibrium control. These findings further support the hypothesis that many riboswitches rely on the kinetics of ligand binding and the speed of RNA transcription, rather than simple ligand affinity, to establish the concentration of metabolite needed to trigger riboswitch function.


Assuntos
Adenina/química , Bacillus subtilis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , RNA Mensageiro/química , RNA Mensageiro/genética , 2-Aminopurina/análogos & derivados , 2-Aminopurina/química , Regiões 5' não Traduzidas , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Temperatura Alta , Cinética , Ligantes , Microscopia de Fluorescência , Conformação de Ácido Nucleico , Ligação Proteica , RNA/química , RNA Mensageiro/metabolismo , Temperatura , Termodinâmica , Fatores de Tempo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA